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Abstract

We develop a collection of methods for adjusting the predictions of quantile regression
to ensure coverage. Our methods are model agnostic and can be used to correct for
high-dimensional overfitting bias with only minimal assumptions. Theoretical results
show that the estimates we develop are consistent and facilitate accurate calibration in
the proportional asymptotic regime where the ratio of the dimension of the data and the
sample size converges to a constant. This is further confirmed by experiments on both
simulated and real data. One of the key components of our work is a new connection
between the leave-one-out coverage and the fitted values of variables appearing in a
dual formulation of the quantile regression. This facilitates the use of cross-validation
in a variety of settings at significantly reduced computational costs.
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1 Introduction

Quantile regression is a popular tool for bounding the tail of a target outcome. This method
has a long history dating back to the foundational work of Koenker & Bassett (1978) and has
found widespread applications across a variety of areas (Koenker & Hallock 2001, Koenker
2017). Classical results demonstrate that as the sample size increases quantile regression
estimates are consistent, normally distributed around their population analogs (Koenker &
Bassett 1978, Angrist et al. 2006), and, perhaps most critically, achieve their target coverage
level (Jung et al. 2023, Duchi 2025).
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Figure 1: Miscoverage of (unregularized) quantile regression with model Y; ~ 8y + X,;' 8 on i.i.d. data
{(Xi,Yi)}?_, sampled from the Gaussian linear model Y; = X, 5 + ¢; for X; ~ N(0,14), € ~ N(0,1),
and ¢; 1L X;. Boxplots in the figure show the empirical distribution of the training-conditional coverage,
P(Yni1 < fBo —i—X;'L—HB | {(X;,Y:)}™,) where (8o, 3) denote the estimated coeficients at quantile level 7 = 0.9
and (X,,41,Y,+1) is an independent sample from the same model. The results come from 100 trials where in
each trial the coverage is evaluated over a test set of size 2000 and the population coefficients are sampled as
f ~ N(0,I;/d). The red line shows the target miscoverage level of 1 — 7 = 0.1.
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Although the classical theory can be accurate for large datasets, it is often insufficient to fully
capture the realities of finite samples. Figure 1 shows the realized miscoverage of quantile
estimates fit at target level 7 = 0.9 in a well specified linear model Y; = X, B+ ¢ with
e; 1L X; and X, € R In agreement with the classical theory, we see that when X; is very
low-dimensional (e.g., d = 1) quantile regression reliably obtains the target miscoverage rate
of 1 —7 = 0.1. However, the scope of this theory is limited and the coverage shows visible bias
in what might be typically considered to be small or moderate dimensions (e.g., d € {15,30}
compared to a sample size of n = 300). Perhaps unsurprisingly, this issue only worsens as
the dimension increases and quantile regression exhibits over 2 times the target error rate at
dimension d = 90.

Formal characterization of the coverage bias of quantile regression was first given in Bai
et al. (2021). They eschew classical theory and instead work under a proportional asymptotic
framework in which the ratio of the dimension of the data and the sample size converges
to a constant. Under a stylized linear model, they show that in this regime the coverage of
quantile regression converges to value different from the target level and provide an exact



formula for quantifying this bias. Interestingly, while both under- and overcoverage are
possible, they demonstrate that in most settings quantile regression will tend to undercover.*
This is consistent with the results in Figure 1 as well as additional empirical results that we
will present in Section 6.

Two proposals have been made in the literature for correcting quantile regression’s bias. Under
the same linear model assumptions, Bai et al. (2021) derive a simple method for adjusting
the nominal level to account for overfitting. While quite effective, this procedure is limited in
scope to small aspect ratios and a restrictive model for the data. A more generic procedure
that does not require any such modeling assumptions was given in Gibbs et al. (2025). They
employ a technique known as full conformal inference, which augments the regression fit
with a guess of the unseen test point. This mimics the effect of overfitting the training data
on the test point, thereby eliminating the resulting bias. In general, this approach has two
main drawbacks. First, it requires randomization in order to obtain the desired coverage
level. As we will show shortly in Section 2, this randomization can be significant and may
cause the quantile estimate to vary substantially. Second, additional computation is required
for every test point in order to accurately incorporate it into the fit. This contrasts sharply
with standard quantile regression, which once fitted can issue new predictions at the cost of
computing just a single inner product. Depending on the application, significant additional
test-time computational complexity of this form may not be permissible.

In this article, we develop three alternative procedures for adjusting the quantile regression fit.
All of these methods are deterministic, and two of them require per test point computation
that is identical to standard quantile regression. Briefly, our methods can be summarized as 1)
a deterministic analog of the procedure proposed in Gibbs et al. (2025), 2) a level-adjustment
method that tunes the nominal level of the quantile regression loss, and 3) an additive
adjustment that adds a constant bias to the quantile estimates. To tune the parameters of
these latter two methods, we will utilize leave-one-out cross-validation. A central contribution
of our work is a new connection between the leave-one-out coverage indicators and a set of
dual variables to the quantile regression. This will enable us to compute the entire set of
leave-one-out coverage values in time identical to that of running a single regression fit and
facilitate hyperparameter tuning at significantly reduced computational costs.

The remainder of this article is structured as follows. After giving a brief overview of the
work of Gibbs et al. (2025) in Section 2, we formally introduce our main methods in Section
3. Section 4 then gives a formal connection between the quantile dual and leave-one-out
coverage. Theoretical results showing the consistency of our proposals in the proportional
asymptotic regime are presented in Section 5, while Sections 3.4 and 6 give empirical results
demonstrating the accuracy of our estimates in finite samples. Overall, our results show

*As a matter of terminology, if ¢, is an estimate of the 7 € [1/2, 1] quantile of Y we say that ¢, undercovers
if P(Y < §,) < 7 and overcovers if P(Y < §.) > 7. For 7 < 1/2 this terminology is reversed and we say that
G- undercovers if P(Y < §,) > 7 and overcovers otherwise. This is motivated by the fact that for 7 > 1/2
(resp. 7 < 1/2) the 7-quantile is designed to be a high probability upper (resp. lower) bound on Y. We use
the terms undercoverage and overcoverage to reflect these goals.



that all of our proposed methods are robust and provide reliable coverage irrespective of the
dimension of the data.

The theoretical results in this paper contribute to a growing literature on characterizing
and correcting for overfitting bias in high dimensions (e.g., Karoui et al. (2013), Donoho &
Montanari (2013), Zhang & Zhang (2013), Javanmard & Montanari (2014), van de Geer et al.
(2014), Thrampoulidis et al. (2018), Hastie et al. (2022)). Of particular relevance to our work
are the Gaussian comparison inequalities of Gordon (1985, 1988) and their development for
high dimensional M-estimation problems in Thrampoulidis et al. (2018). These tools will
allow us to characterize the asymptotic behaviour of the quantile regression dual variables
and, through their connection to leave-one-out coverage, to prove the consistency of our
cross-validation estimates. There is a large body of literature investigating the performance
of cross-validation in high-dimensional parameter tuning (e.g., Steinberger & Leeb (2016),
Rad et al. (2020), Bayle et al. (2020), Austern & Zhou (2020), Xu et al. (2021), Patil et al.
(2021, 2022), Steinberger & Leeb (2023), Zou et al. (2025)). On a technical level, these
articles often require smoothness and/or strong convexity assumptions on the loss in order to
derive exact formulas for the leave-one-out coefficients. In contrast, we will be interested in
the behaviour of the leave-one-out coverage of quantile regression, which is a discontinuous
objective taken over parameter estimates coming from a non-differentiable loss. Here, our
connection to the dual program will be critical in allowing us to avoid technical problems
present in prior work and facilitate the application of tools which are typically unavailable in
studies of cross-validation.

Notation: In the remainder of this article we let {(X;, Y;)}/' € R? x R denote a set of
covariate-response pairs, where the first n points denote the training set and the last entry
is the test point for which Y,,;; is unobserved. Given a target level 7 € (0, 1), we will be
interested in quantile regression estimates of the form

n

(Bo, B) = argmin > €.(Y; — B — X 8) + R(B),

(Bo,B)ERHT j—1

where (.(r) = 7r — min{r,0} is the usual pinball loss and R : R? — R is an optional
regularization function. For d fixed and n tending to infinity, the quantile regression estimates
satisfy the target coverage guarantee P(Y, 1 < ﬁAO +X, 41 B) — 7. Our goal in this article is to
adjust the regression procedure to recover this guarantee even in cases where d/n — v € (0, 00)
converges to a constant.

2 Overview of the methods of Gibbs et al. (2025)

As discussed above, the task of removing the coverage bias of quantile regression has been
previously considered by Gibbs et al. (2025). They propose to adjust the regression by
adding an imputed guess for the test point into the fit. Concretely, they consider unpenalized



regressions of the form

n

(Botv, vy = argmin S 6(Y; — Bo — X[ B) + € (y — Bo — X, 8), (2.1)
(Bo,B)ERI*TT ;1

and define the adjusted quantile estimate

A hadj., Aadj.,
Jace(Xnt1) =sup{y 1y < B + X};—HB 4wy

as the maximum value of y that is covered by the regression fit with y in place of Y, ;. Under
no assumptions on the data beyond that they are i.i.d., this adjustment has the conservative
coverage guarantee P(Y, 11 < jaoc(Xns1)) > 7.

Unfortunately, the coverage of this method is not typically tight and the authors find
that ooc(Xny1) can exhibit significant overcoverage bias in high dimensions. To further
correct this estimate, they additionally introduce a smaller, randomized threshold that is
constructed using the quantile regression dual. More formally, let r,,11 =y — By — X, 3 and
ri=Y;—By— X, B forie€ {1,...,n} denote a set of primal variables that are constrained to
be equal to the residuals. Let n € R™™! denote the corresponding dual variables for these
constraints. Then, the adjusted quantile regression (2.1) can be equivalently written in its
primal form as

. - . n+1
(6gdj-7y’ Badj-7y’ fadJ-vy) = argmin Z ér (Tz)

(Bo,B)ERITL reRN T j—1
subject to 41 =y — Bo — X115,
ri=Y;—Bo— X, B, Vie{l,...,n},
with associated Lagrangian,

n+1 n

L(ﬁOaﬁara 77) = Z 67'(7"1') + an(y; - 60 - X;rﬁ - Ti) + 77n+1(y - 60 - XT;:—l/B - Tn-i-l)a
=1 =1

and dual program,

n
Aad"v —
7Y = argmaXZin + N1y
neRrHL
n+1 n+1

subject to Zni =0, Z niXi=0, =(1-7) =27
i=1 i=1

To connect the dual variables to coverage, note that differentiating the Lagrangian with
respect to r,.1 gives the first-order condition
{7}, y > B + X1, 5,
~adj., Aadj., Hadi.
Mg’ € J{-(1 =1}y < BV + X, 509,
A d.'7 A .-
[_(1 _7)77—]7 ?JZBBH ?J_i_X;L_IBadJ v,

5
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Figure 2: Empirical estimates of the average adjusted quantile (left panel) and miscoverage (right panel) of
the randomized method of Gibbs et al. (2025) conditional on the cutoff, U. Data for this experiment are
sampled from the Gaussian linear model Y; = X' 3 + ¢; where X; ~ N(0, ;) and ¢; ~ N(0,1) with X; L ¢;.
Dots and error bars show means and 95% confidence intervals obtained over 2000 samples of the combined
training and test dataset {(X;, E)}?:ll where in each sample the population coefficients are generated as
f~N (0,14/d). Throughout, we set d =40 and n = 200. The red line in the right panel indicates the target
miscoverage level of 1 — 7 = 0.1.

This connection, along with some additional calculations, motivates the randomized quantile
adjustment Jacc, rand. (Xni1) = sup{y : 7.1 < U}, where U ~ Unif(—(1 — 7), 7). Crucially,
this method has the desired exact coverage guarantee, P(Y,,11 < dacc, rand.(Xnt+1)) = 7.

As discussed above, this method has two shortcomings. The first is that to compute the
cutoff we need to evaluate the solution path of 7, as y varies. Although Gibbs et al. (2025)
give some strategies for accomplishing this in an efficient manner, their methods still typically
require additional computational time of at least Q(d*)" per test point. Adapting their methods
to penalized regressions is more challenging and requires even higher computational complexity.
This contrasts sharply with standard quantile regression which can issue predictions quickly
at the low cost of computing the inner product X, HB . The second major shortcoming of
Jcoe, rand. (Xnt1) 1s that its value depends heavily on the randomized choice of U. Figure 2
displays estimates of the average conditional cutoff, E[dccc, rand. (Xn+1) | U] and miscoverage,
P(Y,+1 > dacc, rand. (Xnt1) | U) as U varies on data sampled from a Gaussian linear model
with d/n = 0.2. We see that the average cutoff can change by a factor of almost 2.5 and the
miscoverage can vary by over 0.5 — 2 times the target level depending on the sampled value
of U. As an aside, we note that the exact magnitude of these values depends directly on
the aspect ratio. In the classical case where d/n — 0 the randomization disappears and the
method (asymptotically) produces a fixed cutoff, while larger aspect ratios produce greater
variability.

"This comes from the cost of inverting a d x d matrix, which we shorthand as requiring (d*) time,
although some algorithms with faster scaling are known.



3 Methods

We now introduce three alternative methods for debiasing quantile regression. As shown
theoretically in Section 5 and empirically in Sections 3.4 and 6, all of these methods provide
(asymptotically) exact coverage. Notably, this does not mean that their performance is
identical. In Section 6 we compare the three approaches across a number of additional
metrics (e.g. prediction set length, conditional coverage properties) and observe considerable
variability. After reading the introduction to each method below, readers who are primarily
interested in practical recommendations may choose to skip ahead to these results.

3.1 Fixed dual thresholding
Our first procedure makes a simple adjustment to §ecc, rand.(Xnt+1) by replacing the random-
ized cutoff with a fixed threshold. This gives us the adjusted quantile estimate
Cidual thresh. (Xn+1; t) = sup {y : ﬁ:(-ig.fy S t} .
At threshold ¢, the coverage of this method is given by

P(YnJrl S Qdual thresh. (Xn+1; t)) = P(ﬁadj.’YnJrl S t)

So, to obtain the target coverage level of 7 we see that we should set ¢ as the 7 quantile of
fpadi-Ynt1 - Since this quantity is unknown, we replace it with the empirical estimate

n
. . 1&
t = Quantile (7’, — Z 5) ,
iz

where 7 denotes the dual variables fit using just the training data {(X;,Y;)}?, and
Quantile(r, P) denotes the 7 quantile of the distribution P. Corollary 5.1 below verifies that
this estimate is consistent in high dimensions and thus that this method provides the desired
asymptotic coverage.

While this approach is derandomized, it still retains the same test-time computational
complexity as the method of Gibbs et al. (2025). Our next two proposals will address this
shortcoming.

3.2 Level adjustment

The second method we will consider is to modify the nominal level used in the quantile
regression loss. In particular, let

n

(Bo(7°), B(r*)) = argmin Y Craar (Vi — Bo — X' ),

(Bo,B)ERIHL j—1



denote the quantile estimates fit at adjusted level 724, Let (357 (724"), 5~#(r24})) denote the
corresponding leave-one-out coefficients obtained when the iy, sample is excluded from the
fit. Then, we define

n

LS LY < ) + X)) - 7

n;3

, (3.1)

724 — argmin
Tadj-€[0,1]

as the level that obtains the smallest leave-one-out coverage gap. This gives us the adjusted
quantile estimate,

Qevet-adj. (Xnt1) = BO(fadj') + XJHB(%adj').

As an aside, we remark that in practice the leave-one-out coverage is typically a non-decreasing
function of 724, Using this observation, in the experiments that follow we will compute (3.1)
using binary search.

A method for adjusting the quantile regression level has also been previously proposed by
Bai et al. (2021). They showed that when the aspect ratio is small and the data come from a
stylized linear model the value 784 = (7 — %%) /(1 — %%) asymptotically provides the desired
coverage. The method above can be seen as a generalization of this procedure that replaces

their modeling assumptions with a generic leave-one-out cross-validation based approach.
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Figure 3: Average value of 724 (left panel), empirical miscoverage (center panel), and mean coefficient
estimation error (right panel) of quantile regression fit with an adjusted level (blue), adjusted regularization
(orange) and a joint level and regularization adjustment (green) as the dimension of the data varies. Data for
these experiments are sampled from the Gaussian linear model Y; = X;B+€ with X; ~ N (0, Iy), ¢ ~ N(0,1),
and ¢; 1L X;. Dots and error bars in the left and right panel show estimated means and 95% confidence
intervals from 100 trials where in each trial the population coefficients are sampled as § ~ N (0,15/d).
Boxplots in the center panel show the empirical distribution of the training-conditional miscoverage evaluated
over the same 100 trials where in each trial the miscoverage is estimated on a test set of size 2000. The
red line shows the target miscoverage of 1 — 7 = 0.1. All regularization levels are chosen from the grid
A =1{0,0.005,0.01,...,0.1}

Unfortunately, tuning the level alone is not sufficient to regain coverage at higher aspect
ratios. The center panel of Figure 3 shows the realized miscoverage of Gievel-aqj.(Xn+1) for
increasing values of d/n on data generated from the Gaussian linear model. We see that



for d/n < 0.1 leave-one-out cross-validation successfully finds an adjusted level that restores
coverage. On the other hand, for larger aspect ratios all values of 724 undercover. As a
result, despite selecting the largest possible adjustment of 724 ~ 1,* this method still realizes
a significant bias.

To obtain uniform coverage across higher aspect ratios, we will add regularization to the
regression. For simplicity, we focus our experiments on ridge regularization, though we
anticipate that other choices would also be effective. Proceeding as above, let

(Bo(X, 79, BN, 7°)) = argmin Y~ Craas (Y; — Bo — X, B) + A1 83-
(Bo,B)ERIT =1
denote the coefficients fit with regularization A and adjusted level 724 and ( ﬁAO’ YN, T, 3 “HN, 24
denote the corresponding coefficients obtained when the i, sample is omitted from the fit.
Let .
STV < Byt ) + XA (N

=1

LOOCov(\, 724)

3\*—‘

denote the leave-one-out coverage at parameters (X, 72%-). Then, our goal is to find a specific
choice (A, 724) such that LOOCov(A, 724) is close to 7.

In general, there will be more than one setting of (\, 724") that provides valid coverage. To
choose amongst these values, we will use an auxiliary multiaccuracy target. Briefly, we aim
to ensure that the miscoverage of quantile regression is uncorrelated with the covariates. We
defer a detailed discussion of the motivation behind this metric to Section 6.1 where we discuss
other goals for quantile regression beyond marginal coverage. Now, given a discrete grid of
candidate values A for A\, we select the parameters using the following two-step procedure:

1. For A € A define
#24-(\) = argmin ‘LOOCOV()\ ) — 7

Tadi-€[0,1]

as the adjusted level that gives the smallest leave-one-out coverage error,

2. Let A, ={ e A: ’LOOCOV()\, Fadi-())) — 7" < 2/n} denote the set of regularization

levels that provide approximate leave-one-out coverage and
. L yr, X (U{Y: < B (7295 () + XT B (A, 729 () } - 7))

A =argmin max T ,
xeA, JE{l,...d} 7 2ui=1 |Xi7j|

(3.2)

as the regularization level that minimizes the leave-one-out multiaccuracy error (see
Section 6.1 for a detailed explanation of this error metric).

As above, in our experiments we implement the first step of this procedure using binary
search. This gives us the final adjusted quantile estimate,

@evel—reg( n+1> 60(A Aadj( )) +1B()\ Aﬁdj( ))

'In this case, we set 724 to be slightly less than 1 to have a well-defined quantile regression fit.




Before moving on, it is worthwhile to ask if level-tuning is necessary or if coverage could
be more easily obtained by simply holding 7% = 7 fixed and adjusting the regularization
alone. Empirically, we find that while such a strategy is feasible, it typically leads to over
regularization. To illustrate this, the right panel of Figure 3 compares the estimation error of
B, ?adj'():)) against that of 3(\,, ) where

A- = min {\ € [0, 00) : LOOCov(\,7) > 7 — 2/n}

denotes the smallest regularization level that obtains a leave-one-out coverage of at least
T — 2/n. Data for this experiment are sampled from a well-specified Gaussian linear model
and in both cases, we target a coverage level of 7 = (0.9. We find that joint regularization and
level tuning gives a smaller estimation error uniformly across all aspect ratios. As a result,
we will prefer this method in the sections that follow and omit further investigation of sole
regularization tuning.

3.3 Additive adjustment

The final method we will consider is applying an additive adjustment to the quantile estimate.
One way to implement such an adjustment would be to fit the parameters (Bg, B) using a
standard quantile regression and then, at prediction time, output the corrected estimate
c+ Bo + X! +1B for some constant ¢ € R. This approach has been previously considered
by Romano et al. (2019) under the name conformalized quantile regression. They propose
to fit the parameter ¢ using a held out subset of the training data that is not used in the
quantile regression. In high-dimensional problems where data is scarce, withholding data
from the initial regression may lead to a considerable drop in efficiency. In the following
section, we will develop a computationally efficient leave-one-out cross-validation procedure
that facilitates accurate parameter tuning without data splitting. To leverage that theory
here, we now introduce an alternative method for computing an additive adjustment.

For any c € R, let BC denote the coefficients fit in the intercept-less quantile regression,

pe = argminzn:ET(Y; —c—X,'5). (3.3)

BERT =1

Let BC’_i denote the corresponding coefficients obtained when the iy, sample is excluded from
the fit. Similar to the previous section, one reasonable proposal is to select the adjustment

, (3-4)

¢ = argmin

ceC n:

11y Thel _
;H{KSC%—X@B} T

that provides the smallest leave-one-out coverage gap over some appropriate set of candidate
values C. This would then give us the adjusted quantile estimate Gadd.-adj. (Xn+1) = c%—XnT 41 BC
Unfortunately, as with the level adjustment procedure, we find that at larger aspect ratios
this is insufficient to ensure coverage. Figure 4 demonstrates this on simulated data from a

10
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Figure 4: Empirical estimate of the mean selected value of ¢ (left panel), realized miscoverage for varying
dimension (center panel), and realized miscoverage as ¢ varies (right panel) of the unregularized additive
adjustment. Data for this experiment are sampled from the Gaussian linear model Y; = X;'— B + € with
X; ~N(0,14), €, ~N(0,1), and ¢; I X;. Dots and error bars in the left panel show estimated means and
95% confidence intervals taken over 100 trials. Boxplots in the center and right panel show the empirical
distribution of the training-conditional miscoverage evaluated over the same 100 trials where in each trial
the miscoverage is estimated on a test set of size 2000 and the population coefficients are sampled as
B~ N(0,I4/d). The black line in the left panel shows the maximum allowable value for ¢, while red lines in
the center and right panel show the target miscoverage of 1 — 7 = 0.1.

Gaussian linear model. For simplicity, in this experiment we restrict the set of candidate
values for ¢ to C' = [—10, 10]. Similar to the previous section, we find empirically that the
leave-one-out coverage is non-decreasing in ¢ and thus we solve (3.4) using binary search. We
find that for d/n > 0.3 this method almost always selects the maximum value of é = 10 (left
panel) and, despite selecting such a large value, still undercovers (center panel). This issue
cannot be alleviated by increasing the cap on ¢ as larger values do not change the coverage
(right panel).

To overcome this shortcoming, we will once again add regularization to the regression. Let

A

pre = argmin » (. (Y; —c— X;'B) + Allsl3,

BeERT  ;—1

denote the coefficients fit with regularization level A and additive adjustment ¢, and BA’\’C’*"
denote the corresponding coefficients when the 7, sample is excluded from the fit. Let
LOOCov*™ (X, ¢) = 157 1{Y; < e+ X' Bre=1} denote the corresponding leave-one-out
coverage estimate. As above, we search for a pair (A, ¢) that obtains the desired leave-one-out
coverage while minimizing multiaccuracy error. Namely, we fix a grid A of possible values for
A and consider the two-step procedure:

1. For A € A define

¢(A) = argmin ‘LOOCovadd()\, c)—T
ceC

Y

as the adjusted level that gives the smallest leave-one-out coverage error,

11



2. Let A, ={ e A: ’LOOCOVadd()\, ¢(N)) — T’ < 2/n} denote the set of regularization
levels that provide approximate leave-one-out coverage and

‘l iz Xy (1 {Yi < é(N) + XZTBM(AL—@'} _ T)‘

n

(3.5)

A= argmin max
. 1 n ’
Neh,  GE{Lmd} 2 i | Xl

as the regularization level that minimizes the leave-one-out multiaccuracy error.

As above, in our experiments step one of this procedure is computed using binary search.
This gives us the final quantile adjustment,

q\add.—reg. (Xn+1) = 6(5\) =+ X7—|l—+136()\)7)\'

3.4 Simulated example

We conclude this section with a brief simulated example demonstrating that all of the methods
proposed above give accurate coverage in high dimensions. More extensive comparisons
that evaluate these procedures across a number of additional metrics are given in Section 6.
Similar to Figure 1 from the introduction, we generate data from the Gaussian linear model
Y, = XZTB + e with X; ~ N(0,1,), €, ~ N(0,1), and ¢; 1 X;. Figure 5 shows the resulting
coverage of both our methods and that of standard quantile regression. We see that all three
of our methods offer robust coverage irrespective of dimension (left panel). As anticipated by
the theory presented below in Section 5, this coverage becomes more tightly concentrated on
the target level as n and d increase (right panel).

I Quantile Regression  EEE Fixed Dual Thresholding I Additive Adjustment with Regularization ~ B Level Adjustment with Regularization

n=200 d/n=0.1
0.30
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Figure 5: Empirical distribution of the training-conditional miscoverage of quantile regression (blue) and
our fixed dual thresholding (orange), additive adjustment (green), and level adjustment (red) methods. The
left panel shows results obtained with varying dimension and a fixed sample size of n = 200, while the right
panel varies n and d together at a fixed aspect ratio of d/n = 0.1. Boxplots show results from 200 trials
where in each trial the miscoverage is evaluated empirically over a test set of size 2000 and the population
coefficients are sampled as 3 ~ N(0, I;/d). The additive adjustment procedure is implemented with range
C = [-10,10] for ¢ and all regularization levels are chosen from the grid A = {0,0.005,0.01,...,0.1}.
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4 Efficient leave-one-out cross-validation

Two of the methods developed in the previous section use leave-one-out cross-validation
to select their hyperparameters. The typical implementation of these procedures requires
fitting n quantile regressions across a range of hyperparameter settings. In this section, we
derive a connection between the leave-one-out coverage and the quantile regression dual
variables that allows us to obtain all n leave-one-out coverage indicators with just a single fit.
Hyperparameter tuning can then be performed at the cost of just a few regression fits across
different parameter values.

To introduce this method, we define a few pieces of additional notation. Throughout this
section, we consider quantile regressions of the form

W = argmin »_ £, (Y; — X;"d) + R(w). (4.1)
weRP ;1

Note that unlike the previous sections, here we have chosen to omit an explicit intercept
parameter. This allows us to unify the notation to encompass both our level-based adjustment,
in which ¥; = Y;, X; = (1, X;), and p = d+1, and our additive adjustment, in which Y; = Y; —c,
X; = X;, and p = d. Following the same steps as in Section 2, a useful dual for this regression
can be obtained by defining the additional primal variables r; = Y; — X, w for i € {1,...,n}
and corresponding dual variables n € R™ for these constraints. This gives the dual program

f) = argmax ) nY; — R* <Z 771)2'1> (4.2)

neR™ i1 i=1
subject to — (1 —7) 2 m; <7,

where R* denotes the convex conjugate of R. Finally, in what follows we let =% denote the
corresponding primal solution when the iy, sample is omitted from the fit.

Our first result derives a general connection between the leave-one-out coverage and the sign
of the dual variables.

Proposition 4.1. Assume that R is convex. Then, all dual solutions 7} and leave-one-out
primal solutions W~" satisfy the conditions

Y, < X o™t = # <0,

and . . ‘
Y, > X o™ = 7 >0.

Now, recall that our goal is to compute the leave-one-out coverage, % n LY < Xo)
The above proposition suggests that this quantity should be comparable to % » o, {n <0}
Unfortunately however, deriving an exact equivalence between these two quantities is not
possible due to the ambiguity around the edge cases Y; = )~(1T =" and 7); = 0. We are not
aware of any simple method for resolving these cases in full generality. One of the key
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difficulties is that without additional assumptions both the primal and dual solutions are not
unique and at these edge cases the coverage can vary depending on which solution we select.
The following example illustrates one such instance where this occurs.

Example 4.1. Consider fitting an intercept only quantile regression with T = 1/2 to find the
median of the three data points (Y1,Ys,Y3). For simplicity, assume that Yy < Yy <Ys. The
primal solution is W = Y3 with corresponding dual variables ) = (—1/2,0,1/2). Critically, we
have that 15 = 0. Now, consider the leave-one-out problem when Y is omitted. Then, the
median is any point W2 € [Y1,Y3] and it is ambiguous whether Yy is covered.

We will now introduce two different techniques for modifying the regression to avoid the above
ambiguity. For simplicity, we focus specifically on cases where R is a quadratic regularizer,
although we expect similar results to hold for other choices. Our first method is to perturb
the covariates by adding a small amount of independent noise to each of their values. The
magnitude of this noise is not critical and can be made arbitrarily small such that it has
a vanishing impact on the quantile regression objective. Our insight is that even a small
amount of noise is sufficient to push the dual solutions away from zero and, correspondingly,
to enforce a unique value for the leave-one-out coverage. To illustrate this, the following
demonstrates how added noise removes the ambiguity observed in Example 4.1.

Example 4.2. Consider adding noise to the intercept parameter in Example j.1, i.e., consider
fitting an intercept-less quantile regression on the three data points {(1+&1,Y1), (1+&, Y2), (14
&3,Y3)} where &, &, and &3 are i.i.d. continuously distributed random variables independent
of (Y1,Ys,Y3). As before, assume for simplicity that Y1 < Yo < Y3. For sufficiently small
values of (&1,&2,&3), the dual solution is uniquely specified as ) = (—1/2, 2%;2), 1/2) and the
leave-one-out primal solution with point (14 &, Ys) omitted is (with probability one) unique
and given by

2 _ {111&, fIL+&|>[1+6&]

1_{3537 Zf|1 +€1‘ < ’1 +€3|

For (&1,&,&3) sufficiently small, we see that Yo # (14 &) ™2 and thus there is no ambiguity
in the coverage of the leave-one-out solution.

The second method we will consider is to add non-zero Ly regularization to all of the primal
variables. Similar to the added noise, the magnitude of this regularization can be arbitrary
and, in particular, can be taken to be vanishingly small such that it has almost no impact on
the regression. The only important consideration is that the regularization makes the fitted
leave-one-out solutions unique and thus removes ambiguity in the coverage.

Assumptions 1 and 2 give more formal statements of our two approaches for ensuring leave-
one-out uniqueness. We note that both of these assumptions require that the distribution of
Y; | X; is continuous. This can always be guaranteed by adding a small amount of noise to Y;.
The main result of this section is stated in Theorem 4.1 which shows that these assumptions
are sufficient to ensure a one-to-one equivalence between the leave-one-out coverage and the
signs of the dual variables.
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Assumption 1. The distribution of Y; | X; is continuous. Moreover, the reqularization can
be written as R(w) = 22?:1 )\jw]z for some non-negative constants Ay,..., A\, > 0 and the
covariates can be written as X; = Z; + & where & 1 (Z;,Y;) has independent, continuously
distributed entries. Finally, we have that p < n.

Assumption 2. The distribution of Y; | X; is continuous. Moreover, the reqularization can
be written as R(w) = le )\-wz for some positive constants A1, ..., A\, > 0.

Theorem 4.1. Assume that {(X;,Y;)}?_, are i.i.d. and that the conditions of either Assumyp-
tion 1 or 2 are satisfied. Then, with probabzlzty one we have that for all i € {1,...,n} either
all dual solutions satisfy f); <0 or all dual solutions satisfy 7); > 0. Similarly, wzth probability
one either all leave-one-out primal solutions satisfy Y; < XT ~ or all leave-one-out primal
solutions satisfy Y; > XT ~t. Finally, letting ) and {0}, denote any such solutions we
have that

1
n:

In general, on real data we find that the conditions outlined in Assumptions 1 and 2 tend to
be redundant. In our experiments in Sections 6 and 3.4 we ignore these assumptions and
use the dual variables to estimate the leave-one-out coverage and perform hyperparameter
selection across a variety of different datasets and regularization settings that do not satisfy
these conditions. In all cases, we find that the dual estimate is accurate and facilitates the
selection of hyperparameter values that yield reliable coverage. As a result, outside of rare
edge cases we find that % *, 1{n; <0} can typically be used to estimate the leave-one-out
coverage without the need to modify the data or estimation procedure.

5 High-dimensional consistency

We now develop our main theoretical results establishing the high-dimensional consistency of
the estimates proposed in the previous sections. Throughout, we will work in a stylized linear
model with Gaussian covariates that is commonly used in work in this area (e.g., Bayati &
Montanari (2012), Donoho & Montanari (2013), Thrampoulidis et al. (2015, 2018), Dicker
(2016), Sur & Candes (2019)). While we will not pursue this in detail, universality results
derived for similar problems suggest that one should expect our results to also hold under
more relaxed assumptions (e.g. X; having i.i.d. entries) (Han & Shen 2023). This is validated
by the empirical results presented in the following section which demonstrate the robustness
of our methods on real datasets.

Assumption 3. The data {(X;,Y;)}", are i.i.d. and distributed as Y; = X' B + ¢; with
X; ~N(0,1y), ¢ ~ P, and ¢ L X. Moreover, the error distribution P, is continuous,
mean zero, and has at least two bounded moments. Additionally, the density of P. is bounded,
continuous, and positive on R. Finally, the population coefficients are themselves random

and sampled as (\/Eéj);?zl g Ps independent of {(X;, €)1, .
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We will focus on quantile regressions of the form

min > 6 (Vi = o = Xi' B) + Ra(B). 5.1
(Bo,ﬁ)eRdH; ( Ho B) () (5.1)

We make two remarks about this set-up. First, for simplicity, we have chosen to focus on
regressions containing an intercept. To obtain results for our additive adjustment method
we will also need to consider cases where [ is replaced by a fixed constant. This extension
is stated at the end of this section in Theorem 5.2. Second, here we have allowed the
regularization function R4 to depend explicitly on the dimension. This is done to account for
the fact that the regularization level may need to be rescaled as n and d increase. Our formal
assumptions on the regularizer are stated in Assumption 4 in the appendix. At a high-level,
we require that R, is convex and that the data have enough bounded moments to ensure that
various functions of Ry satisfy the law of large numbers. As an example, Lemma B.1 verifies
that our assumptions are met if P has four bounded moments and R4(3) = v/d\| 3|, or
Ra(B) = d\||B||3 is Ly or Ly regularization.

We now state the main result of this section, which establishes that the coordinate-wise
empirical distribution of the dual variables converges to an asymptotic limit. Although we
only state this result for aspect ratios d/n — v € (0,2/7), we expect similar conclusions to
hold for v > 2/m under appropriate assumptions on the regularization.

Theorem 5.1. Fiz any 7 € (0,1) and suppose that the data and reqularizer satisfy the
conditions of Assumptions 3 and 4. Suppose that d,n — oo with d/n — v € (0,2/7). Then,
there exists a limiting distribution P, such that for any bounded, Lipschitz function v and
any o > 0,

n

P (For all dual solution 1) to (5.1), izw(ﬁz) - IEZNPW[@/)(Z)]| < 5) — 1.

=1

Moreover, the distribution P, is supported on [—(1 — 7), 7] with discrete masses at —(1 — 7)
and T and a continuous distribution on (—(1 —7),7).

As an aside, we note that an explicit description of the asymptotic distribution P, can be
found in equation (B.7) in the appendix. Briefly, P, is a truncated Gaussian distribution
with mean and variance parameters dictated by the solutions to the asymptotic optimization
program specified in (B.2).

Theorem 5.1 has two critical corollaries for our debiasing methods. The first shows that the
quantile estimate used by our fixed dual thresholding method is consistent.

Corollary 5.1. Consider unregularized quantile regression with Ry(8) = 0. Under the
assumptions of Theorem 5.1, it holds that for any 6 > 0,

P (For all dual solution 1) to (5.1),

1 n
Quantile <T, -3 5771.) — Quantile (7, P,)
[t

§5>—>1.
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Our second corollary establishes the consistency of our leave-one-out coverage estimates. As
in Section 4 above, we focus on the case of Ly regularization though we expect similar results
to hold for other choices.

Corollary 5.2. Let (X, 41, Ynt1) denote an independent sample from the same distribution
as {(X;,Y))},. Suppose that Ry(8) = L, X132 for some X, ..., \é > 0. Let (bo, )
denote any primal solution to (5.1) chosen independently of (X,i1, Yni1). Then, under the
assumptions of Theorem 5.1, it holds that for any é > 0,

1 & A N
P (For all dual solutions 7) to (5.1), - Y U{n <0} —P (Yn+1 < Bo+ XJHB)‘ < 5) — 1.
i=1

Proofs of Theorem 5.1 as well as Corollaries 5.1 and 5.2 are given in the appendix. Our
arguments build heavily on Gordon’s comparison inequalities (Gordon 1985, 1988) and their
application to high-dimensional regression developed in Thrampoulidis et al. (2018). At a high
level, these results allow us to derive a correspondence between the dual quantile regression
program and a simplified auxiliary optimization problem that replaces the covariate matrix
with vector-valued random variables. The main technical difficulty is then to characterize the
solutions of this auxiliary program. One key difference between our result and that of the
original work of Thrampoulidis et al. (2018) is that we consider the behaviour of the solutions
under arbitrary bounded, Lipschitz functions. We are not the first to derive an extension of
this type. However, to the best of our knowledge previous extensions typically rely on strong
convexity of the auxiliary optimization (see e.g., Abbasi et al. (2016), Miolane & Montanari
(2021), Celentano et al. (2023)). Here, we derive a similar result under weaker conditions.

It is worthwhile to contrast Theorem 4.1 with the results of Bai et al. (2021). In that
paper, the authors derive a number of asymptotic consistency results for the primal quantile
regression estimates (BO, B) Here, we provide a set of complementary asymptotics for the
dual. In addition, we also treat a more general setting that removes the restrictions to small
aspect ratios and unregularized regressions present in their work. While not our main focus, a
corollary of our analysis is that the intercept, 8y and estimation error, ||3 — 3|2 both converge
to constants under the assumptions of Theorem 5.1. This is formally stated in Theorem B.1
in the appendix, which directly generalizes Theorem C.1 of Bai et al. (2021).

Finally, as a last remark, we note that all of the conclusions stated above also hold for the
intercept-less regressions used in the additive adjustment procedure. The proof of this result
is nearly identical to that of Theorem 5.1 and thus is omitted.

Theorem 5.2. Under identical assumptions, the conclusions of Theorem 5.1 and Corollaries
5.1 and 5.2 remain true when the intercept By is replaced by a fixed, real-valued constant.
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6 Real data experiments

6.1 Methods and metrics

We now undertake a series of empirical comparisons of our proposed methods. As baselines,
we also evaluate the performance of standard quantile regression, the randomized method of
Gibbs et al. (2025), and the conformalized quantile regression (CQR) method of Romano
et al. (2019). In all experiments we implement conformalized quantile regression so that 75%
of the data is used to fit the quantile regression and 25% is used to calibrate its coverage.

To evaluate these methods, we compare the quality of prediction sets constructed using their
estimated quantiles. More precisely, for a given miscoverage level a € (0,1/2) (taken to be
0.1 in our experiments) we compute the (adjusted) estimates §*/?(X,11) and ¢*=*/%(X,,41)
of the /2 and 1 — /2 quantiles using each of the methods. We then evaluate the resulting
prediction interval [§%/2(X,11), 3 "*/?(X,11)] in terms of three criteria: 1) marginal coverage,
P(q**(Xn11) < Yagr < ¢7%(X41)), 2) interval length, max{g'~*/*(X,11) —¢*/*(Xn41), 0},

and 3) maximum multiaccuracy error.

Multiaccuracy as introduced in Hébert-Johnson et al. (2018) and Kim et al. (2019) is a general
criteria for measuring the bias of a predictor over reweightings of the covariate space. In our
context, we will consider linear reweightings and thus our goal will be to obtain quantile
estimates whose miscoverage events are uncorrelated with the features. This is motivated
by results from the classical regime in which dlog(n)/n — 0. There, Duchi (2025) showed
that (under appropriate tail bounds on the data) the canonical quantile regression estimates

(dg{f , quf/ ?) satisfy the multiaccuracy condition,

sup B [ X, 0(1{Yar1 € [43k (Xns1) dor > (Xar )]} = (1= @) [ {(X5, Y)Y, | = 0. (6.1)

flvll2<1

As a concrete example to motivate the utility of this condition, consider fitting quantile
regression with a feature X, ; = 1{X; € G} that indicates whether sample 7 falls into group
G. Then, applying (6.1) with v = e; gives the conditional coverage statement,

P(Yni1 €[G5 (Xnt1)s don > (Xns )] | Xogr € G {(X, YO })) &1 - a

More generally, by designing the features appropriately multiaccuracy conditions of this form
can be used to ensure that the prediction set provides accurate performance across sensitive
attributes of the population.

Motivated by this, Gibbs et al. (2025) extend (6.1) to the high-dimensional setting and show
that their randomized adjustment satisfies

E [ X, 0(1{Yni1 € [G8C0, rana (Xns1): G600, rana. (Xns1)]} — (1 = a))| =0, Vo € R™.

Notably, this statement is not directly comparable to (6.1) since here the expectation is
taken marginally over the random draw of the training set. In general, one cannot expect to
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obtain training-conditional convergence uniformly over v in high dimensions. Nevertheless,
as we will see shortly, empirically dacc, rand.(Xn+1) can provide approximate validity when v
is restricted to a smaller set (e.g. to the coordinate axes).

The methods developed in the previous section are not designed to explicitly guarantee
multiaccuracy. Regardless, since they are built on top of quantile regression one may hope
that they still approximately satisfy these conditions. To evaluate this, we will examine the
coordinatewise multiaccuracy error of each method defined as

o B nis (@Y € [0 (X)X )]} = (1= @) [{E YV (o)
je{lmd) E[|Xnt1,l]

In order to improve the performance on this metric, we recall that in Section 3 we defined
the parameters for our regularized level and additive adjustment procedures to minimize a
leave-one-out estimate of (6.2) (cf. equations (3.2) and (3.5)).

6.2 Results

We compare the methods on three datasets in which the goals are to predict the per capita
violent crime rate of various communities (Redmond & Baveja 2002), the critical temperature
of superconductors (Hamidieh 2018), and the number of times a news article was shared
online (Fernandes et al. 2015). All three datasets are publicly available from the University
of California, Irvine machine learning repository (Dua & Graff 2017). After filtering out
features with missing values and removing (approximately) linearly dependent columns, the
datasets have 99, 81, and 55 covariates, respectively. We normalize both the features and the
target to have mean zero and variance one and then compare the methods discussed above in
terms of their miscoverage, median length, and multiaccuracy error.

Figure 6 shows the outcome of this experiment. Results in the figure summarize 20 trials
where in each trial the data are randomly split into a training set of size 400 and a test set
of size 20005 and a random subset of the features are selected for use. As shown in the top
row, all of our methods provide the desired marginal coverage. The randomized method of
Gibbs et al. (2025) also provides the desired coverage (green), while conformalized quantile
regression (orange) has a very slight bias due to the fact that after data splitting only a small
number (< 100) of points are available to estimate its bias correction.

Among the methods with the desired coverage, our level adjustment procedure (purple) yields
the smallest intervals (center row). The additive adjustment procedure (brown) produces
almost identical interval lengths on the communities and crime (left) and superconductivity
(center) datasets and slightly larger intervals on the news (right) dataset. The largest intervals
are output by the randomized method of Gibbs et al. (2025), which obtains a median interval
length of up to two times that of the level adjustment procedure in higher dimensions (green).

SThe communities and crimes dataset only has 1994 samples, so we utilize a smaller test set of size 1594
for its experiments.
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Figure 6: Empirical miscoverage (top row), median length (center row), and multiaccuracy error (bottom
row) of quantile regression (blue), the baseline methods of Romano et al. (2019) (orange) and Gibbs et al.
(2025) (green) and our fixed dual thresholding (red), level adjustment (purple), and additive adjustment
(brown) methods on the communities and crime (left panels), superconductivity (center panels), and news
(right panels) datasets. Dots and error bars show means and 95% confidence intervals obtained over 20 trials.
The red lines in the top panels show the target level of a = 0.1. In all experiments, the additive adjustment
procedure is implemented with range C' = [—10, 10] for ¢ and regularization levels are chosen from the grid
A ={0,0.005,0.01,...,0.2}.

In terms of multiaccuracy, the lowest error is obtained by the dual thresholding methods
(bottom row). Interestingly, while randomization is necessary to obtain a theoretical multiac-
curacy bias of zero, we find that the fixed thresholding method (red) offers nearly identical
performance in practice. On the other hand, our level and additive adjustment procedures
realize a higher multiaccuracy error (purple and brown). This is to be expected since by
adding regularization to these methods we have introduced bias. To see this, note that letting
(Bo(N), B(X)) denote the fitted coefficients at quantile level 7 with Ly regularization A and /3
denote the population quantile regression coefficients, we have that in the classical regime
where dlog(n)/n — 0,

E [ X0 v(1{Yns < Bo() + X1 BN} = 7) | {(X0, Y)Y = =207 3.

This follows directly from the first-order conditions of quantile regression and the arguments
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of Duchi (2025). Notably, while non-negligible, we find that this error is small relative to
the effects of overfitting bias and our level and additive adjustment procedures still produce
much lower multiaccuracy error than the baseline approaches of quantile regression and
conformalized quantile regression.

7 Conclusions

In this paper we developed three methods for correcting the coverage bias of quantile
regression. Theoretical and empirical results show that all of these procedures provide robust
coverage irrespective of the dimension of the data. In terms of prediction interval length and
multiaccuracy error, none of these three methods dominate. Across our empirical results we
find that the fixed dual thresholding method offers the lowest multiaccuracy error. However,
this comes at the cost of wider prediction intervals and greater test-time computational
complexity as compared to the level and additive adjustment procedures.
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A Proofs for Section 4

We will now give formal proofs for the results stated in Section 4. Throughout, we use the
same notation as was defined in the main text. Namely, we let {(X;, Y;)}", C R? x R denote
the training data and we consider quantile regressions of the form

m1nZ€ (Y, — X, w) + R(w).

wERP

We use @ and #) to denote primal and dual solutions to this regression, and @~ and /™ to
denote corresponding leave-one-out primal and dual solutions when the iy, sample is omitted
from the fit. To begin, we prove a useful technical lemma that relates a dual value of zero to
interpolation of the leave-one-out prediction.

Lemma A.1. Fiz anyi € {1,...,n} and suppose there exists a leave-one-out primal solution
with Y; = XlTuAFZ Then, there exists a dual solution to the full program with 7; = 0.
Symmetrically, if there exists a dual solution to the full program with 9); = 0, then there exists
a leave-one-out primal solution with Y; = X, .

Proof. For notational simplicity, we will focus on the case ¢ = n. Suppose there exists a
leave-one-out primal solution with Y, = X,J&~". Fori € {1,...,n—1},let 77" = Y;— X, ™
denote the additional primal variables. Let " € R""! denote a corresponding dual solution
to the leave-one-out program. The Lagrangian for the leave-one-out program is

n—1 n—1
Lon(w™r ™) =3 (™) + > 0" (Y = X w™ =y ™) + R(w ™),
7j=1 j=1

and the Lagrangian for the full program is

n

L(w,r,n) Z Q)—i—inj(}}j—)zjw—rj)—i—?%(w). (A1)

7j=1 7=1

By assumption, (@w~",#~", 7~") is a saddle point of L_,,. Using this fact, and taking first-order
derivatives, it is straightforward to verify that (@=", (#7",0), (7~",0)) is a saddle point of L.
Thus, 4 = (77", 0) is a solution to the full dual program, as desired.

For the reverse direction, suppose there exists a solution to the full dual program with 7, = 0.
Let (w,7,7) denote the corresponding saddle point of L. By differentiating L with respect to
rn, we see that we must have 7, = 0. Moreover, differentiating L with respect to 7j,,, we then
also find that Y, — X’Juﬁ = 7, = 0. So, using the notation v;.(,—1) to denote the first n — 1
entries of a vector v € R™ and taking first-order derivatives of L_,, it is straightforward to
verify that (@, 71.,—1), N:(n—1)) is a saddle point of L_,. Since Y, = Xnle}, this proves the
desired result. 0

To prove Proposition 4.1, we will need one additional technical result demonstrating that the
14n, coordinate of the dual solution, 7j;, behaves monotonically in Y;. This result was originally
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derived in Gibbs et al. (2025) where it was used to obtain efficient algorithms for computing
dacoe, rand. (+). To state the result formally, let

ﬁf’i—)y = argmax anY +ny—R" (Z n; X ) , (A.2)

n€[-(1—7),7]" J#i 7=1

denote the dual solution obtained when Y; is replaced with y € R. We have the following
lemma.

Lemma A.2. [Theorem 4 of Gibbs et al. (2025)] Fiz any i € {1,...,n} and let {ﬁﬁ'_)y}ye]g
denote any collection of solutions to (A.2). Then, y — NYi7Y is non-decreasing.

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. Fix any i € {1,...,n}. Suppose there exists a leave-one-out primal

solution with ¥; < X;7#~". By Lemma A. 1 when y = X, " there exists a solution to (A.2)
with ﬁy X = 0. By the monotonicity of the dual solutions (Lemma A. 2) this immediately
WYi—= X!

implies that any dual solution to the full program must satisfy #; < 7, = 0, as desired.

The case where Y; > Xl-T W~ follows by an identical argument. O]

We conclude this section with a proof of Theorem 4.1. To aid in this proof, we introduce
a number of additional pieces of notation. We let X € R"*? denote the matrix with rows
Xi,..., X, and Y € R" denote the vector with entries Yi,...,Y,. For any vector v € R* and
set I g {1,...,k} we let (v;) = (v;)ier denote the subvector consisting of the entries in 1.
Similarly, for any 7 C {1,...,n} and J € {1,...,p} we let X[,J = (X}’j)ig,je] denote the
submatrix consisting of the rows in I and columns in J. Finally, for any £ € N we let [k]
denote the set {1,...,k}.

We begin by presenting a preliminary lemma which controls the rank of the submatrix of X
corresponding to the interpolated points of the quantile regression.

Lemma A.3. Assume that {(X;,Y;)}, are i.i.d. and that the distribution of Y; | X; is
continuous. Then, with probability one all primal solutions W satisfy,

Proof. Fix any primal solution . Let I_() = {i € {1,...,n} : Y; = X"} denote the set
of interpolated points. By definition, we have that
Yi_(w) = Xi_@w),[p0

For the sake of deriving a contradiction, suppose that rank ()Z' (i-Vie XT@L[M) < |I=(w)|. Let

I(w) C |I=(w)| be such that XI(@),[p} is of maximal rank. Then, there exists a matrix A(X)
such that X;_ o r(w),;p) = A(X)X @), and, in particular,

Y @onit) = Xi_@ni@)pt = AX) X, p1b = AX) V@)
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However, for any fixed sets I' C I” C [n], the distribution of 371/:\ | (X,Yy) is continuous.
So, taking a union bound over all choices of I_(w) and I(w) we find that this occurs with
probability zero, as claimed.

m
We now prove Theorem 4.1.

Proof of Theorem 4.1. We split into two cases corresponding to the two sets of assumptions.

Case 1, Assumption 2 holds: In this case the primal program is strongly convex. Thus,
for any i € {1,...,n}, the leave-one-out solutions @~ is unique and by the continuity of
the distribution of Y; | X; we must have that P(Y; = X, % ~%) = 0. By Lemma A.1, this
implies that P(Any dual solution satisfies 7; = 0) = 0. The desired result then follows from
the convexity of the space of primal and dual solutions.

Case 2, Assumption 1 holds: This case is considerably more involved. For notational
simplicity, let us restrict to the case ¢ = n. First, note that by the convexity of the space of
primal and dual solutions and the results of Proposition 4.1 and Lemma A.1, it is sufficient to
show that P(There exists a dual solution with 7, = 0) = 0. Fix a dual solution # and define
the sets

Lo (@) = {i € {Looon} i = —(1 =)}, LA) = i € {L...on} 7 = 7},
and Ly (N) ={ie{l,....,n}:—(1—7) <@ <7}

Let (@, 7) denote any corresponding primal solution. The Lagrangian for this optimization

problem is
n

P
L(w,r,n) Zﬁ (r:) Zni(ffi—f(;w—ri)—i-z/\jw?.
=1

i=1
Let Jx = {j € {1,...,d} : A\; > 0} denote the set of coordinates which receive positive

regularization. Let A I = dlag(()\ )jes, ) be the diagonal matrix with diagonal entries (A;);c, .
Differentiating L with respect to w gives us that

~ ~ 1 ~
T A T A A 13T 4
X7 = (2)‘ w])] 1 Xlim,(ﬁ),Jinlint,(ﬁ) = _Xlim,(f])c7JfL77[int.(ﬁ)c and w;, = iAJjX[nLL_n'

Moreover, considering the first-order conditions of L in 7 and r gives us that

Vie ) = X () 1@ = X (3,02 Dc +

- R 1= _ 15 _
= XImt(ﬁ)yJini + 2X11nt ( J+AJ+ mt (7’]) J+77[mt ( ) + QXImt 77) -]+AJ+ 1nt (’V])C J+7711nt (77)

1 1T oA
inintA(TA]),JJrA‘h_X[n],J_‘_T]
Combining these equations, we arrive at the system of equations

L X X A T
EX 1nt (77 J+AJ+XImt ( ) J+ XIintA(ﬁ))Ji |:r]]1nt(’f])‘| — [Elnt ( XImt_I(_T]) J+ J+Xflnt ( ) J+77]1nt ( )
X e ), Oegl | [ dug X B, (5,75 Min. ()¢
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We claim that the matrix appearing on the left hand side above is invertible. To see this,
suppose that (vy,vy) € RISl g in the kernel of this matrix. In particular, suppose
that

1 - . - .
2let ( ) +AJiXEnt.(ﬁ),J+U1 + X[mt‘(ﬁ)”]ivz — O and XIiIt.(ﬁ)7J-CQ—U1 — O (A3)
Taking the inner product of the first equation with v; we find that

1. - 8 1. -
0= UlT§Xhm.(m,J+AJfXITimm),le +0) Xy ()05 V2 = ’UlT§le<ﬁ>,J+AJ+1X1Tm.(ﬁ>,J+Ul

i X;lrnt(ﬁ)7j+vl - 0
Combining this fact with the second equation in (A.3) gives that v X e, (7),lp) = 0 and so
applying the result of Lemma A.3 we find that v; = 0. Returning (A.3), this implies that

X (), gev2 = 0. Lemma A.4 shows that X e (), ge is of rank |J¢[. Thus, we must have that
vy = 0. ThlS proves the desired claim.

Applying this claim, we find that

Mline. (9)
e
— XImt (7]) J+A let ( ) J+ XIint.(ﬁ)ﬂ]i [Y[int4( ) X[mtTn) J+A Iint. (’r])c J+77[mt ( )
X Iins. ( ) O‘JiM‘LCJ XIintA(n)c,Jﬁ_nImt.( )

Now, let us consider the behavior of the random variable appearing on the last line above
when ]int.(ﬁ) is a fixed set and 7, () is a fixed vector, i.e., fix any set I [n| and vector
nre € {—(1 —7), 7}e] with the property that the matrix inverse appearing above exists

int.

and consider the behaviour of the random variable

1% —1¢T % Ly 15 —1¢T A
inintm‘{jFAJ_‘.XIint_,JJr XIint.:J_T_ Y}int. - iX]mt ,J+AJ+XI‘;]t',J+nIiCm‘
T
\ —X Je e

mt (A int.

A4
X o I 0yc,1ue (A-4)

Now, by our assumptions the distribution of (X , f/), we have that conditional on the values of
(X e, J, and X Iins.,J¢ » the vector appearing in (A.4) is continuously distributed. So, condition
on the event that the matrix appearing in this expression is invertible, the entire random
variable appearing in (A.4) has a continuous distribution. In particular, we find that with
probability one this random variables has all non-zero entries. Taking a union bound over
the values of [, and ﬁfﬁm gives the desired result.

[]

We close this section with a proof a lemma regarding the rank of the submatrix of interpolated
points that was helpful in the proof in Theorem 4.1.
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Lemma A.4. Suppose that Assumption 1 holds. For any dual solution 1), let Ly, () = {i :
—(1—7) < () < 7} denote the set of coordinates in which 7 lies in the interior of its range.
Let J$ = {j : A\j = 0} denote the set of unregularized coordinates of the primal variables.
Then,

P(For all dual solutions, rank()ﬂé]i”t(ﬁ)w]i) =Ji) =1

Proof. By our assumptions on the distribution of X we have that with probability one
rank(X 4 p) = min{|A|, |B|} for all A C [n] and B C [d]. Thus, it is sufficient to show that
with probability one all dual solutions satisfy |J$| < L. (7).

Fix any dual solution 7 and corresponding primal solution (0, ). Recall that (b, 7,7 is a
saddle point of the Lagrangian

n

n 5 5 p
L(w,r,n) = ZET(TZ-) + Zni(Yi - XiTw —71;) + Z /\jwjg-.
i=1 i=1 j=1
Differentiating L with respect to r gives us that that 7 € [—(1 — 7), 7)]". Moreover, differen-
tiating L with respect to w gives us that

cT T A T A

Xpppae1 =0 == Xy ), Mine () = Xy ()75 M (2)-
For the sake of deriving a contradiction, suppose that |l ()| < JS. Let Joup, (1) € JS be a
subset of size |Joup. (7)] = |Lint.(7)|. Rearranging the above, we have that

- a “1%T -
(ﬁnm.m) = (X e (D)oot (1)) K Fine. (3% T () it ()

T A~ T A~
and Xy ) Jow. ()¢ Dhine. (7) = let‘(ﬁ)c,Jsub.(ﬁ)cmim-(ﬁ>6>

1T i

i i A ~
:> X]int.(ﬁ)aJsub.(ﬁ)c (Xlint.(ﬁ)vJsub.(ﬁ)) Xlint.(ﬁ)chsub.(ﬁ)/r,Iint‘(ﬁ)c = XIint.(ﬁ)cv sub.(7'7)C/’71im3'(’r7)C (A5>

Now for any fixed sets [, C [n] and Jgup,. € [gl] with |Jsup.| = |[fins.| and any fixed vector
fre, € {—(1 — 7),7}", the random variable XI—I;t e Mg, has a continuous distribution

conditional on X} ;. (X} ) LX
int.»Jgup.

Iint,»t]suh int_a*]subnlicnt. and SO’ mn partICUIar’

v T v T -1 T A xT - _
IED (Xlinthscub_ (XIinthsubA) Xlicnt,:t]sub.n[icnt. o Xlicnt'vjscub‘nlicnt) - O

Taking a union bound over all possible choices of the sets I, and Ji. and vector Nie, , We
find that with probability one no dual solution can satisfy (A.5). This proves the desired
result. O

B Proofs for Section 5

The bulk of this section is devoted to a proof of Theorem 5.1. Proofs of Corollaries 5.1 and
5.2 are then given at the end of the section. In what follows, we use X € R™? to denote
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the matrix with rows Xi,...,X,, and Y € R” and ¢ € R” to denote the vectors with entries
(Yi,...,Y,) and (e, ...,€,), respectively. Additionally, for any convex function f: R — R,
x € R, and p > 0 we recall the definition of the Moreau envelope,

1 9
es(@sp) =min ol = vl” + £ (v).

For ease of notation, we will also define the Moreau envelope at p = 0 using the continuous
extension ef(z;0) = f(z) (cf. Theorem 1.25 of Rockafellar & Wets (1997)). Finally, for
f:R%* = R we recall the definition of the convex conjugate,

fH(x) = —inf f(v) —v .

vER
We have the following assumptions on the regularizer and population coefficients.

Assumption 4. The distribution of population coefficients, Pz has two bounded moments.
Moreover, the reqularization function and Pg are such that:

1. Ry is convex. Moreover, for all 3 € R, R(B) > 0 and R(0) = 0.

2. For any C > 0, the subderivatives of Rq are bounded as

1
sup sup g||87€d(5)||2 < 0.
deN [|B]l2<C

3. There exists a convex function v : R — R with the property that for any ¢ € R, p > 0,
and h ~ N(0, 1),

1 ~ ~
L (et Vs ) 5 sy + 1B )] <

as d/n — v € (0,00).
4. The function (¢, p) — Ele,(chy + vV dpy; p)] is jointly continuous on R x Rsg.

5. For any p > 0, Oue,-(+;p) and O2e,(-;p) exist almost everywhere and satisfy the
equations

jCE[ew (chy+pyVdBr; p)] = E[hdse,s (chy+pyVdBy; p)] = cB[0 e, (cha+pyVdpis p)].

6. For any compact set A C R+ and constant ¢ > 0,

inf  E[0?e,-(chy + pyVdpy; p)] > 0.

ceA,0<p<C

All of the assumptions above are fairly generic and will hold for most common separable
regularizers. In particular, the first two conditions are mild convexity and boundedness
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conditions. The third part of Assumption 4 will follow for separable regularizers by the law
of large numbers and the fourth part will follow by the dominated convergence theorem.
The fifth part of the assumption will follow by using the dominated convergence theorem to
swap the derivative and expectation and using Stein’s lemma to compare the expectations
involving the first and second derivative. Since the Moreau envelope is a convex function,
the sixth condition of Assumption 4 is fairly weak and will hold as long as d2e,«(-; p) is
sufficiently bounded away from zero. As an example, the following lemma verifies that all
these conditions are satisfied by L; and L, regularization.

Lemma B.1. Assume P has four bounded moments. Then, for any A > 0 the conditions of

Assumption 4 are met for Rq(B) = Vd\||B|y and Ra(B) = d\||B|3.

Proof. For Rq(8) = d\||B]|5 define v(b) = Ab%. Then, by a direct calculation we have that
Ax? . b? x?

oy V0= e = o

Parts one, two, and three of Assumption 4 are immediate. Part four follows by Chernoft’s
bound and part five follows by the dominated convergence theorem and Stein’s lemma
(Lemma 1 of Stein (1981)). Part six is also immediate since d2e,«(z; p) = (2A + p)~! > 0.

On the other hand, suppose R4(3) = VdA||f]|1. Define v(b) = A|b|. Then,

eu(T;p) =

)\2
Ev\T; =9\ a2,; Tl > s v - Evx\T; x
PP M50 00, [z] > A, g M 2> A
—rA — 5P < —Ap,

Moreover, one can verify that e,-(x; p) is twice piecewise continuously differentiable with

x| < A,

0, |z] < A,
axell* (x7p) = {x sgn x)>\ agel/* (x7p) = {1
p p

.|zl > A, 2zl > A

The desired results once again follow by the dominated convergence theorem and Stein’s
lemma.

]

For notational convenience, let Ry = n~ /2R, denote a rescaling of the regularizer. Our main
point of study is the joint min-max formulation of the quantile regression,

1 1 -
— > l(r;) + Y — Bol, — XB) + —=Raq(5).
mgxﬁlglﬂgn; ri)+—n' (Y = By B) NG a(B)
Letting u = 3 — § and re-writing R4(3) in terms of the convex conjugate, this can be
equivalently formulated as

~ 1

max mm—Zﬁ i) + 177 (6 = Boly + Xu—71)+ —=s' (B +u) — —=R(s). (B.1)

1
mS  Bo,u,r n 1 \/ﬁ
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To prove Theorem 5.1 we will need to study the solutions of this optimization program.
We proceed in four main steps. First, in Section B.1 we give a number of preliminary
simplifications of the optimization program. Section B.2 then begins our main study of (B.1).
We show that the solutions to this problem are characterized by an auxiliary optimization
program in which the matrix X is replaced by vector-valued Gaussian random variables.
Moreover, we additionally demonstrate that the solutions to this auxiliary problem are
themselves characterized by the deterministic asymptotic program

min max E e, | Mug+e€— 5o~ || ——5—
(180|<Cpy 0 My <Cy,0<p1 <C1) (0<p2<Caycn <My <Cy) M’? 2p2 (B 2)
M M, M, M, - M. '
i nPL p2—]E[e,,< ”h1+’y\/aﬂl;2>]>,
2 2 P2 P2

where (5o, M., p1, p2, M) are the optimization variables, (Cg,, C,, C1, Cy, ¢;, C,)) are constants
that we will define shortly, and gy, hy ~ N(0,1) independent of By and €;. The solutions to
this asymptotic program are characterized in Section B.3. Section B.4 then gives a proof of
Theorem 5.1 and Section B.5 gives proofs of Corollaries 5.1 and 5.2.

Our overall analysis framework is based on the work of Thrampoulidis et al. (2018). In what
follows, we will focus on the aspects of the analysis that are new to our work and omit the
proofs of some results that are minor variations of those appearing in Thrampoulidis et al.
(2018).

B.1 Preliminaries

We begin our proof of Theorem 5.1 by giving three lemmas which bound the ranges of the
optimization variables appearing in (B.1). In what follows, we use the notation (BO, a, 7,1, 8)
to denote a generic primal-dual solution to (B.1), where (Bo, @, 7) are the primal solutions
and (7, §) are the dual solutions. Our first result bounds the range of 7).

Lemma B.2. Under the assumptions of Theorem 5.1, there exist C,, > ¢, > 0 such that

P (For all dual solutions to (B.1), v/nc, < ||f]l2 < \/ﬁCn) — 1.

Proof. Let 1 denote any dual solution. First, note that by considering the first-order conditions
in r of (B.1) we have that § € [—(1 —7),7]" and V; # B0 + X = He {—(1—71),7}.
Taking C,, = max{(1 — 7), 7} gives the upper bound. To get the lower bound, note that by
Lemma A.3 any primal solution can interpolate at most d + 1 of the data points. Thus, we
must have [|7)]|2 > vn — d — 1 min{(1—7), 7} and so setting ¢, = (1/2)/1 —ymin{(1—7),7}
gives the desired result.

]

Our next lemma gives a similar set of bound on 4 and BAO). For ease of notation, we state
this result in terms of the original primal variables § = 4 + (.

33



Lemma B.3. Suppose the assumptions of Theorem 5.1 hold. Then, there exist constants
Cy,Cs, > 0 such that

P (For all primal solutions to (B.1), || — Bll2 < C. and |fo| < CBo) — 1.

Proof. Let (30, B) denote any primal solution. By the law of large numbers and the optimality
of (5o, 5), we have that

=1

> minf1 — 7,7} > XT (3~ B)+ fol — min{1 7.7} > fe] — 05(1)
i=1 i=1
L f: X, u+ B

inf
llull2<1,|B0|<1,max{||ull2;|Bol}=1) T ;=

> min{1 — 7, 7} max{||3 — ||, |BO|}(
—min{l — 7, 7}E[e;] — op(1).

Lemma C.1 below shows that

1 & 2
lim inf —Z|X;u+ﬁo| 5 \/7_\/5
=1 T

i inf
n,d—00 (|lul|2<1,|Bo|<1,max{||ull2,|B0]}=1) N ;—

Applying this to the above, we conclude that

A A E[(.(Y1)] + min{l — 7, 7} E[e;]
max{|| — B2, [Bo|} <
il 2, [ Bol } min{l — 7. 7} /2m — )

where it should be understood that the op(1) term on the right hand side is uniform over all

primal solutions. Taking C,, = Cg, = 2Er[ﬁ;$ﬁiﬁ?\{/1;7:i}i;ﬂ gives the desired result. O

0@(1),

Our final preliminary lemma bounds the size of solutions for r and s.

Lemma B.4. Suppose the assumptions of Theorem 5.1 hold. Then, there exist constants
C, >0 and Cy > 0 such that

P (For all solutions to (B.1), ||3ls < Csv/n and |72 < C’T\/ﬁ> — 1.

Proof. Fix any solution (7, 8, Bo, 4, 7) to (B.1). By the first-order conditions of (B.1) in n we
must have . .
17]l2 = lle = Boln — Xttll2 < [lell2 + v/n|Bo| + Amax (X) [[@]|2.

By standard results (e.g. Theorem 3.1 of Yin et al. (1988)) we have that Ap.x(X)/v/n is
converging in probability to a constant. Moreover, by the law of large numbers, ||e|l2/+/n 5
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E[€2]. Combining these facts with the bounds on |fy| and |||, given by Lemma B.3 gives
the desired bound on ||7||s.

To bound ||3]|2, note that by standard facts regarding the convex conjugate (e.g. Proposition
5.4.3 of Bertsekas (2009)), we have § € OR4(3 + @). Moreover, by Lemma B.3 and the law of
large numbers there exists C' > 0 such that with probability converging to one, ||+ alls < C.
So,

1 1 = 1
—||8]]2 < sup |—=0R4(v)|| = sup |—0Ra4(v)
v lela<c ||V o lelb=clin 2
This last quantity is bounded by our part 2 of Assumption 4. O

B.2 Reduction to the auxiliary optimization problem

We will now reduce (B.1) to a simpler asymptotic program that is easier to study. Our
main tool will be the Gaussian comparison inequalities of Gordon (1985, 1988) and their
application to regression problems developed in Thrampoulidis et al. (2018). In particular,
we will apply the following proposition. This result is a minor extension of Theorem 3 of
Thrampoulidis et al. (2018) (see also Theorem 3 of Thrampoulidis et al. (2015)) and thus its
proof is omitted.

Proposition B.1 (Extension of Theorem 3 of Thrampoulidis et al. (2018)). Fiz any d,n € R.
Let X € R™ be distributed as (Xi;)icin)jeld) & N0, 1) and define g ~ N(0,1,) and h ~
N(0, 1) to be independent Gaussian vectors. Let Q(Bg,u,7,7,5) : RxRIXR*xR* x R? — R

be continuous and jointly convex in (r, 5y, u) and concave in (s,n). Fiz any compact sets
ACR X R? x R" and B C R" x RY. Define the values

d = max min 7' Xu-+ LU T T, S),
(n,s)eB (IBO,U,T)GA77 Q(BO " )

. T -
= max min |u + uTh . s).
¢ (n,8)€B (Bo,u,r)€A H H277 9 ”77H2 Q(ﬂo n )

Then, for all c € R,
P(® > ¢) < 2P(¢ > ¢).

If in addition A and B are convex, then for all c € R,

P(® < ¢) < 2P(¢ < c).

To apply this result in our context, let

12 1
d(S) = max min SN+ =n"(e—Bol, — Xu—r
(€S lIsll2<Csv/n) (|Bo]<Cay,llull2<Cu[|r[l2<Cryv/n) Ty ; (r) nn ( ‘ )
1 ~ 1 -
+—s'(B+u)— n a(s),
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where the constants Cs, Cs,, Cy, C, are defined as in Lemmas B.3 and B.4. Let C,, be defined
as in Lemma B.2. We know that asymptotically the solutions of ®({n : |||l < v/nC,})
agrees with those of (B.1). Our goal will be to compare the value of ®({n : ||n|ls < v/nC,})
to that of ®(S) when S is a more restricted set. The key insight of Thrampoulidis et al.
(2018) is that for this purpose it is sufficient to study the value of the auxiliary optimization,

1 1
S) = min max min “Nu|lan"g+ — u'h
?S) (Il <Crv/ Bol<Csg VMU <Ca) (1sll2<Cay/mnes) (u:llull2=Mq) (n” len"g + 2 linle

Ly 1,70 1+ 1$ No LT T
+ne = —fon 1y =~ r+n;&(n)+\/ﬁs (B +uw) \/ﬁRd(S)v

where h ~ N(0,1;) and g ~ N(0, I,,) are Gaussian vectors sampled such that (g, h, ¢, 3) is
jointly independent. The following proposition formalizes this.

Proposition B.2 (Corollary of Lemma 7 in Thrampoulidis et al. (2018)). Suppose the
assumptions of Theorem 5.1 hold and let C,, be a constant satisfying the conclusion of Lemma
B.2. Let S be any set such that

1. S is compact,

2. There exists V € R and £,6 > 0 such that min{P(¢({n : ||nll. < v/nC,}) >V +
§).B(&({n: Inll2 < VAC,}) <V —6)} > 1 — €. Then,

P(For all dual solutions to (B.2), 1 ¢ S) > 1 — 4¢.

Proof. This result follows immediately by applying Proposition B.1 and repeating the steps
of Lemma 7 in Thrampoulidis et al. (2018). O

Our goal now is to lower bound ¢({n : |||z < /nC,}) and upper bound ¢(S) for a more
restricted set S. We will focus initially on ¢({n : |n]]z < v/nC,}). Let ¢, and C, be the
constants appearing in Lemma B.2. We have that

o({n: Inll2 < vnCp}) = ¢({n : cyv/n < |Inll2 < Cyv/n})
1

1
= min max (—Mu —|Inll2h + —=s
(Irll2<Cr v Bl <Csy O<Mu<Cu) (1sll2<Ca/rscn /n< |2 <Cp/) n NG
~Mun' g+ e = — o ~1) r+n; (7“)+\/585 NG a(s)
1 1
—Myh+ —
NIRRT

1y Lors 1o

2

= min max - M,
(Irl2£Cr /1| B0l £Cgy O Mu <Cu) (lIsll2<Csv/men <My <Cy)

2

1 1 1
ﬁﬁ - ﬁﬁoln - ﬁ

1
7Mug + r

vn

+ M,

2
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Notably, this last optimization problem is convex-concave. Now, note that for any vector

xz and C > ||z||2, [|z||2 = ming<,<c ”2ﬂ + 5. Moreover, by the weak law of large numbers,

there exist constants C,Cy > 0 such that for any with probability converging to one,

L Mg+ e .- | <c
max [ r < ,
(Irla<Co/i ol 2C s 0<Mu<C) || VA Y \/‘ \/‘ |, =
1 1
max —=Myh + —=s|| < Cs.
(Isll2<Cs v en<Mn<Cy) || /T2 Vo,

So, applying these facts and using Sion’s minimax theorem to swap the order of minimization
and maximization (Sion 1958), we have that the above can be rewritten as

M,
min max min_ max_ min max |Myg + € — Bol, — 7|3
(180|<Ciag V=ML SC.) (en S0, Cy) 0<p1 SC1 0<p3<C |2 <C fu la=Cuv/i \ 21

anl Mupg 1 TS 1 -
_ _ _ Y’ . _ — _— _PR* .
2 anQ 2 + n 12::1 T(T’L) + \/ﬁS 6 \/ﬁRd(s)

We will now rewrite the optimizations over r and s in terms of the Moreau envelope.

+

Lemma B.5. Fiz any constants Cg,, Cy, Cy, ¢y > 0 with C,) > ¢,. Under the assumptions of
Theorem 5.1, there exist constants Cy, C,. > 0, such that with probability tending to 1, it holds
that for any |Bo| < Cg,, 0 < M, < Cy, ¢, < M,y < C,,, and pa, p1 > 0,

1 n L1
wgt+e— Bl —rls+ =) (. (ry) = e wGi + 6 — Bos— |,
2 SCs v 2np g o I Z n Z o ( g Fo Mn>

and

M, 1 -~ 1 =
max  ——— |Myh+ |2+ —=s' 5 — —=Ri(s)

Isll2<Covm 2mpa Vn \/_
M2M, 1o (MM,
= ||h||2
n

Proof. Recall the definition of the proximal function,
1
proxf(a:; T) = argmingﬂx — ng + f(v).

By definition of ¢, we have prox, (0;7) = 0 for any 7 > 0. Since the proximal function is
non-expansive (Proposition 12.28 of Bauschke & Combettes (2017)) it holds that for any
r€Rand 7T >0,

[[prox,, (z;7)l2 = [prox,, (z;7) — prox, (0;7)2 < |z — Of]2 = [|]2-
So, in particular,

prox(Myg + € — Boly; pi /M) < || Mug + € — Boly ||
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This last quantity must be bounded by the law of large numbers and our restrictions on M,
and (y. This proves the first part of the lemma. The second part of the lemma follows from
equations 86-88 of Thrampoulidis et al. (2018) and an identical argument. O

Now, without loss of generality we may assume that C, > C, and C; > C,. So, applying
Lemma B.5 and taking a continuous extension at p; = 0, our previous calculations gives us
the optimization problem

P1
(\Bo\<050,0<Mu<cu,o<p1<cl)(c,,<Mn<C,7,0<p2<02 ( Zeﬁ < ugi ¥ € = Po; Mn) (B.3)
M2M L < u> M, py Mup2> ‘
n) T2 T2 )

Our final step is to replace all the random quantities above with their asymptotic limits. To
do this, we will employ the following lemma which states that pointwise convergence can
be converted to convergence of the minimum value of a convex function. This result is a
minor variant of Lemma 10 of Thrampoulidis et al. (2018) and we include a partial proof for
completeness.

Lemma B.6 (Extension of Lemma 10 of Thrampoulidis et al. (2018).). Fiz b > a and let
fn i [a,b] = R be a sequence of random convex functions converging pointwise in probability
to f:[a,b] = R. Then,

inf f,(x )ﬂ inf f(x).

z€[a,b] z€[a,b]

Similarly, if f,: (a,b] = R is a sequence of random convex functions converging pointwise in
probability to function f: (a,b] — R, then

inf f,(z )3 inf f(x).

z€(a,b] z€(a,b]

Proof. We will prove the first part of the lemma. Proof of the second part is similar and is
omitted. For any 2’ € [a,b] we have that

limsup inf | fn(z) < limsup f,(2) = f@),

n—oo x€[a,b n—00

and taking the infimum over z" we conclude that limsup,,_,.. infocpqy fn(2) < infoepey f(2).

It suffices to prove a matching lower bound. If inf,c(qy f(2) = —oo there is nothing to show.
So, assume that inf,cp,y f(z) > —oo. By Lemma 7.75 of Miescke & Liese (2008) we have
that for any interval a < x; < x5 < b,

sup | ful@) — fl@)] =0,

z€[z1,22]
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and thus also,

inf fn() inf f() (B.4)

z€[x1,22] z€[x1,22]
So, we just need to check what happens on the boundary. We will focus on the lower
boundary. First, suppose that liminf, ,, f(z) > infycap f(2). Let 2* € (a,b] be such

that f(2*) < infycpp f(z) + hmmfx_’af(x) nhecton J0) iy any a < x; < xp < x* with
f(z1), f(z2) > f(x*). For any = € [a, xl] let A\, > 0 be such that xo = Ao + (1 — \;)x™.
Then,

Fule2) S Aefule) + (1= Afala) = Jule) 2 Fule®) + 3 () = Fo(a"))

Asymptotically, we have that lim, o fn(22) — fu(z*) L f(z2) — f(z*) > 0 and thus
P
liminf, o infocpq e fu(z) > f(2*) > infocay f(2).

On the other hand, suppose liminf,_,, f(z) = inf,cjp f(2). Fix any 6 > 0. We claim that
there exists a < @1 < @2 < b such that f(x1), f(z2) < infycpp f(2) + 6. To see this, let
x5 € [a, (b4 a)/2] be such that f(xs) < inf,cpp f(z) +6/2. Fix any 0 < { < b — x5 and for
any ¢ € [xs, x5 + &] write

fa) < (1-

Taking ¢ sufficiently small we find that sup ey, ;46 f(2) < infrepup f(z) + 0 and so setting
x1 < T3 to be any points in (x4, x5 + &) gives the desired claim.

r —Is

>f(:v5)+

b—l'(;

Now, for any x € [a, z1] we have

() = f (952 il P (1 _ “) xz) <27 M) (1 _ ""”) fo(2)

= fa(z) > Ty — jlfn(ml) - 522__::1 (1 N 222__:;1> fn(z2)
> min{ f,,(x1), fu(x2)} — 522__;1 (1 — 2;2:?) (fu(xe) — min{ f,,(x1), fu(x2)})
> min{ f,,(x1), fn(z2) $1_—xal (fu(xe) — min{ f,,(x1), fu(x2)})
P N r1 —a
= a:'ler[lib] /(@) Ty — $157

where the probability in the last inequality holds uniformly over z. Thus,

liminf inf fn( )E 1nf f(z).

n—00  gecla,r] z€[a,b]
So, in total, we find that in all cases we may find x; € (a, b] such that

liminf inf fn( )g mf f(z).

n—0o0  ge€la,r1] z€[a,b]
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By a matching argument, we may also find x} € [a,b) such that

P
liminf inf f,(x) > inf}f(w).

n—00  ze(x),b] T z€lab

Combining these two facts and using (B.4) to get convergence on the interior gives the desired
result. O]

Combining all of the previous results we arrive at the following.

Proposition B.3. Suppose the assumptions of Theorem 5.1 hold. Let (Cg,, Cy, ¢y, Cp, C1, Cs)
be constants satisfying the conditions of Lemmas B.2, B.3, B.4, and B.5. Let V' denote the
value of the asymptotic program defined in (B.2). Then,

P
s inf @({n : 1 < VAC,}) = V-

Proof. This lemma follows immediately by the law of large numbers, part 3 of Assumption 4,
and repeated applications of Lemma B.6 to (B.3). O

B.3 Analysis of the asymptotic program

In this section we prove a number of useful results regarding the asymptotic auxiliary program
defined in (B.3). In what follows we use

M7 M,y
A(ﬂo’ MWpl’ Mmp?) =E [eﬁf (Mugl + € — 60; ]pwln>‘| - ZT
M, M, - M, M. M,
+ 7]E' [eu < 1 hl + 7\/3517 )] + nP1 — p2’
P2 P2 2 2

to denote the objective of this optimization.

Lemma B.7. Under the assumptions of Theorem 5.1, A(By, My, p1, My, p2) is jointly con-
tinuous, jointly convexr in (Bo, My, p1), and jointly concave in (M,,p2) on the domain
R x RZO X RZO X R>0 X R>0.

Proof. The last four terms of A are jointly continuous by part three of Assumption 4.
Moreover, joint continuity of the first term follows immediately by inspecting the form of
er. (Lemma C.3) and applying the dominated convergence theorem. The fact that A is
convex-concave follows directly from the fact that it is the pointwise limit of a sequence of
convex-concave functions. O]

Lemma B.8. Fiz any C, > ¢, > 0 and Cy > 0. Under the conditions of Theorem 5.1, the
function

(ﬁoawal) = max A(ﬂoaMuaplaMme)a

ey <My <Cy,0<p2<Cs
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is jointly strictly conver on R x Rsg x Rso. Moreover, for py = 0 this function is jointly
strictly convez in (By, M,).

Proof. We first consider the case where p; > 0. Fix any M, € [c,, C,] and pair of distinct
points (8o, My, p1), (85, ML, py) € R x R>g x Rsg. For 6 € [0, 1] define the function

(1—0)p + 9/)’1)] .

M,

n

U)((g) =E |fg_r (((1 — H)Mu + HM;)gl + € — (1 — e)ﬁo — 956,
For ease of notation, let

(51 52,53) ( Mu,ﬂo 5047/1 - ,01): Po = ((1 - 9)ﬂ1 + 9ﬂ’1),
and Zy = ((1 — Q)Mu +0M g1+ e — (1 —6)8 — 0.

By the dominated convergence theorem and a direct calculation using the form of e, (see
Lemma C.3), we have

n Po n n

— (161 — &)1 —1)1 {Ze<_(1_7)]'\'27} 2]2\33 {Ze> ]\/)40,7}

_ ZiMaSs { (1-7 )%<Zg ]'\.;}—(1_7—)2&)’]1{29<—(1—7')'09}],

w’(&):E[(Qlfl—fz)Tﬂ{Z9>T]\pj}—i—(glgl_&)ZeMnﬂ{_(l— )%<Z < ]\/1[9}

Zp(, n n 2M, M,
and
U},/<8)
ZoM ZiM Po Po
:EK(QQ &)? 7—2(9151 £)&s p§n+€§ apg n) ﬂ{_(l_T)]WnSZGST]\/[n
Mn Zy ? Po Lo
_ My e g _ < Zy < .
o (9151 §a— &3 Pe) IL{ (1—7)— M, Zy TMn

Recall that ¢; has positive support on R. Thus, Zy has positive support on R and ¢;&; —
& — 53% has positive support on R if & # 0. Moreover, if &5 = 0, then (&1, &) # (0,0) and
we clearly have that P(¢g;£; — & = 0) = 0 . In either case, we conclude that w”(#) > 0 and
thus that

M,

is strictly convex. Since this term does not involve p, and the remainder of the objective is
convex (it is the pointwise limit of a convex function), we conclude that the function

(607 uypl) — ]Ef [QKT (Mugl —+ €1 — /60’ pl>‘| ,
n

(507 u7p1)'_> maX A(ﬂOa u:plaMnapQ)a
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is strictly convex. Finally, since A is convex-concave we have that for any (5o, M, p1) €
RXxR>oxRsq, M, — maxo<p,<c, A(Bo, My, p1, My, p2) is concave on R+ and thus continuous
on [¢,, Cy]. The desired result then follows by Lemma C.2.

Now, consider the case p; = 0. Once again, fix M, € [¢,,C,] and a pair of distinct points
(M., Bo), (M}, By) € Rsg x R. For 6 € [0,1] consider the function

W(0) = E[((((1 — )M, + OM) g1 + e — (1 — 0)Bo — 05)].
Let Zy := ((1 = 0)M, + 60M])g1 + ¢ — (1 — 0)5y — 05). By a direct calculation,

w'(0)
= E[r((M, — Mu)gr — (B — Bo))1{Zy > 0} — (1 = 7)((M,, — Mu)g1 — (By — £o))1{Zy < 0}]
= E[((My = M,)g1 — (Bo — B))1{Z < O} + 7((M,, — Mu)g1 — (B — Bo))]

and

w'(0) = dcng (B [(Mu = My)g1 — (8o — Bp))1{e < (1= 6)(Bo — Mugn) + 08, — My91)}] | 91]

= E [(M, = M)g1 = (B0 — 5))°pe((1 = 0)(Bo — Mugr) + (5 — My g1))|
> 0,

where p, denotes the density of €. Since this last term is positive we find that @ is strictly
convex. The desired result then follows by arguing as above. O]

Lemma B.9. Suppose the assumptions of Theorem 5.1 hold. Fiz any constants
Csy, Cu, C1,Co, Cyyyey > 0 with Cpp > ¢, and ¢, < (1/2)min{7?, (1 — 7)?}. Then, the
asymptotic optimization program (B.2) admits a unique solution for (B, M., p1). Moreover,
letting (B85, MY, p;) denote this solution we have that M} >0 — pi > 0.

Proof. Since the optimization domain for (8, M,, p1) is compact and A is jointly continuous
and convex-concave (Lemma B.7) the optimization program (B.2) must obtain its minimum
in (Bo, My, p1) (cf. Proposition 1.26 and Theorem 1.9 of Rockafellar & Wets (1997)). The
fact that this minimizer is unique then follows directly from Lemma B.8.

Now, let (85, M, p;) denote this unique solution and suppose that M, > 0. Recall the
identity (Lemma C.5 below),

132

er(w;p) +ep(x/p;1/p) = 2

Applying this to our optimization problem, we have that for any ps > 0 and 0 < p; < (7,
2 *
_ My My

M 2p2

n

A<587 M{L P1, Mn7 P2) =E [637 (M';kgl + € — 587 pl)]
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—E ley* <M hi + ]\p;*\/_ﬁh ]\pj*ﬂ
P2

M, M; 2
OM;: (p h1+\/_51>]

Mypy  M;ps
T 2

=E [657 (M{fm + e — Bp; ]\p/[lﬂ
—E [ey* < P2 \/_51, p2*>]
[(\/_61) ] npl i MupZ

+~v——FK

2M ; 2 2
So,
(0<p2SCIQI,1c%}§M,,§c,,)A<BS’MJ’O’M p2) 2 (0323502)14(50» 2> 0, ¢y, p2)
Bt (Moo + 1~ 5]~ 7 oo (e + 22V L2 )] (85)
VBV -

We will now compare this lower bound against an equivalent upper bound when p; > 0 is

small and positive. Fix p1, po > 0. By directly examining the definition of e, , (Lemma C.3)
we have the pointwise inequality

M,

e, <M§91 + €1 — By; ,01>
<l (M:gi+ e — ﬁ*)—min{T2 (1—7')2}&]1 M gy +e — By ¢ —&(1—7) &T
u 0 ’ 2M,, u 0 M, "M, ’

and thus for any M, € [c,, Cy],

E leeT <M{fgl + e — f; ]\pj )]

n

- <M591 + e — f; E)]

n

—min{r?, (1 - 7)?} 2> (1 P (M::gl ta-fe -1, PITD)

<E [@ (M;g1 Yo — B A’;)

n

<E
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— min{7?, (1 — T)Q}ﬁ (1 _P (M;gl te—Be [_pl(l —7), PlTD> .
n

Now, let p; be sufficiently small such that P (M;‘;gl +e — B € [—p—l(l —7), 2 TD < 1/2.

Cn [

Then, the above implies that

E [667 <M§91 +e — B; A?) <E

n

0 <J\4;;g1 Yo — B ﬁ)] — min{r? (1 — 7)2}45’\14 .
n n

On the other hand, by part five of Assumption 4 we also have that

d
dM,

R

P2 5. P2

P2 5. P2
E [6,/* (Mnhl + ’yﬁ;\/aﬁl; W

u

Let ¢ = min,, <, <0, 0<po<c MyE [8:36,,* (Mnhl + 7]\%\/851; J\%ﬂ and note that by part 6

of Assumption 4 we have ¢ > 0. Then, the mean value theorem gives

P2 /i p)] e(M, — ).

>E
= M M;

P2 5. P2
E |Fm (Mnhl + ’Yﬁ;\/;lﬁl; w)

e * (Cnh1 + 7y
Putting this all together, we find that for p; sufficiently close to 0,
max A(/887M57p17M777p2)

(0<p2<Ca,0y <My<Cyp)

* * P2 o P2
< _ _ ) .
= oemecraSa<cy b (Magn + e = o) =B [ey (Cnhl T Vb MJ)]
~ M* M
+ 12 E(VdR)Y) — T TP infr? (1 1) oM, — ).

2M; 2 2 AM,
We claim that for p; sufficiently small the term

My py

— min{r?, (1 - 7)*}-E — (M, — c,),
n

w(Mm p1) =
is always negative. Indeed, by our choice of ¢, we have that 2 — min{7?, (1 — T)Q}ﬁ < 0.
So, we may find § > 0 such that for all ¢, < M, < ¢, + 4, 22 — min{r?, (1 — T)Q}ﬁ <0,
and thus also w(M,, p1) < 0 for all p; > 0. On the other hand, for ¢, +0 < M, < C,, we have

¢ . 1
w(My, p1) < p1 (; —min{7?, (1 — 7)° 40) —¢f,

which is negative for p; sufficiently small. This proves the desired claim and thus shows that
for p; sufficiently small

max A(By, My, p1, My, pa) < max E[l, (M:g1 + €1 — 5y)]

(0<p2<C2,cn <My <Ch) (0<p2<C2,cn<My<Cy)
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—~E [el,* (Cnh1+7 ,02*\/351; P2 )] + P2 E[(\/Zzél)ﬂ _ ijpz'

M M oM 2
Comparing the above to our bounds in (B.5) for the case p; = 0 we find that

max )A(ﬂganj>p1:Mnap2) < max A(By, My, 0, My, p2).

(0<P2SC2:C77SM17§C71 (0<P2§C2acn§MnSCn)

Thus, p; # 0, as desired.

O

Lemma B.10. Suppose the assumptions of Theorem 5.1 hold. Fix any constants
Csy, Cu, C1,Ca, Cyy ey > 0 with Cy, > ¢, and ¢, < (1/2) min{7?, (1 — 7)*}. Let (85, M, p})
denote the unique solution to the asymptotic program (B.2) defined in Lemma B.9 and
suppose that M} > 0. Then, the asymptotic program (B.2) obtains a unique solution for M,.

Proof. Since A is jointly convex-concave (Lemma B.7) we know that the function

M, — max min
(0<p2=C) (|Bo]<Cppy 0< My <Cu,0<p1 <Ch

)A(607MU7p1’M7])p2)7 <B6)

is concave on R and thus continuous on [c,, C,]. Thus, this function obtains its maximum.

It remains to show that the maximizer is unique. For ease of notation let Z = Mg, +¢€; — 3

and define the function
p*
w(M,) =E [657 (Z; MZ)] .

Recall that by Lemma B.9 we must have that pj > 0. We claim that w is strongly concave
on [c,, Cy]. To see this, note that by a direct calculation using the form of e, (see Lemma
C.3), we have

*

* * Z2 p* p
w’(M):ElTplﬂ{Z>Tpl}—l— 1{—(1—7)1§Z§T 1}
7 M, | " 2pt M, M,

and

T2p* p* (1 _ 7_)2p* p*
sup w'(M,))<E|—-—"2L11{7>722% — Li{Zz<-1-n2} ]| <o,
c,,ng)gc,, (My) < cy { G & ( >c”




where the get the last inequality we have applied the fact that €; has support on all of R
(and thus that Z has support on all of R).

Now, assume by contradiction that there exist distinct maximizers M, and M} for (B.6) on
the domain [c,, C,]. Since this is a convex-concave problem we must that that M,% and Mg
are maximizers of the function

Mﬂ'_> max A(BS)M:’pT’MW’pQ)v

0<p2<Cs

on [c,, Cy]. Additionally, we must have max,, < Mi<C, MAX0<py <Cs A(Bs, M, py, Mf]“, p2) < 00
for k € {1,2}. This follows immediately from the fact that

max  max A(S8y, M, pi, My, p2) < max  A(0,0,0, M, ps)

cn<Mp<Cp 0<p2<Cs cn<My<Cy

= E[((c)] +1Ev(7Vd5)] < oc.
Fix 6 > 0 small and let p}, p3 € (0,C5] be any two values such that

min A(ﬂa‘,M;‘,p”{,Mj,pg) > max  max A(Sy, M., pi, M

ke{1,2} T en<My<Cy 0<pa<Cy K

ap2) — 0.

By the strong concavity of w(n) and the joint concavity of the remainder of the terms in A
in (M,, p2) we have

1 1 1 1
* * ok > * * ok T 1 - 2 — 1 - 2>
o, max, A(Bo, My, pr, My, p2) 2 A (BO’M“”)“ oMy T oMy 52 T 50
1 * * * 1 * * * infc <M,<C ‘w”(M )’
> §A(ﬁ0,Mu,pl,M$,p§) + §A(50,MuaP1>M5>P§) + E— 877 L (Mé Ms)Q
infe, <m, <o, (W' (M), 4 212
o * * * _ n>MVn>bLn
- cng\l/[%)éCn 0<lega§XCQ A(507 Mu> P15 Mna PQ) 0 + ] (Mn Mn) )
as so rearranging,
8
MY — M?*)? < - :
A T (LT
Sending 6 — 0 gives the desired result. n

Our last result of this section gives a first-order condition for pj.

Lemma B.11. Suppose the conditions of Theorem 5.1 hold. Fiz any Cg,, C,, Cy, ¢y, C1, Cy >
0 with Cy) > ¢, ¢, < (1/2) min{r?, (1 — 7)?}, and Cy > \/CE + E[ef] + C3,. Let (M, pi, 55)
denote the unique optimal solutions to the asymptotic program (B.2) defined in Lemmas B.9
and assume that M;; > 0. Let My denote the unique optimal solution in M, of (B.2) defined
in Lemma B.10. Then, p} satisfies the first-order condition

pi=|E

2
<M:9 + € — 35 — prox,_ <M;:g + €1 — B5; E)) } :
n
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Proof. Under the given assumptions we must have that pj minimizes the function
M; py
2 )

w(p) =E [ea (Mffgl + e — By; ]\p/[l*ﬂ +
U
on the interval [0, C}]. For ease of notation, let Z = Mg, + €; — 5. By, Lemma 15(iii) of
Thrampoulidis et al. (2018) we have that dilpegT(x; p) = —ﬁ(m — prox, (z; p))? (see also the
calculations in Lemma C.3 below). Applying this fact alongside the dominated convergence
theorem gives

M; M
w'(pr) = —2—ng <Z — prox,. (Z; ]\6[1*‘)) + 7"
1 n

So,

w(p) =0 <= p= |E

2
P1
7 — Z: 2
( prong( ’M;)) ]

Finally, recall that the function h(z) = z — prox,_(z;p) is 1-Lipschitz (cf. Proposition 12.28
of Bauschke & Combettes (2017)) with h(z) = 0. Thus, the right-hand-side above is at most

(Z — prox, <Z; @))2 < \/m < \/C2+E[&] +C],

By assumption this last quantity is strictly below €} and thus pj must satisfy the given
first-order condition.

E

]

B.4 Final steps

In this section we prove Theorem 5.1. We begin by stating a convergence result for the primal
variables.

Theorem B.1. Let C,, Cg,, Cy, ¢y, C1, Oy be constants satisfying Lemmas B.2, B.3, B.4, and
B.5. Let M} and (35 denote the unique solutions for M, and [y in the asymptotic program
(B.2) defined in Lemma B.9. Then, under the assumptions of Theorem 5.1, it holds that for
all 6 >0,

P (For all primal solutions to (B.1), |||3 — Blls — M| < & and |5y — 55| < (5) — 1.

Proof. The proof of this result follows similar steps to the proof of Theorem 5.1 and, in
particular, is very similar to the proof of Proposition B.5 below. Namely, following similar
arguments to those presented in Section B.2 for the dual variables, one can show that to
prove this result it is sufficient to bound the value of the program

. 1 1
primal (g . max min min MNullanTg + = u'h
PTS) (150l <Cov/mon <My €<Cr) ([IFll2 <Co/n(Bosu)eS) (illnlla=My) plelln” g+ il
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ln €— fﬁonTl - ln r+ ;f ri) \;HST(B +u) — ;HRZ}(S))
for various choices of S. Arguing as above, the values of this program are completely
characterized by values of the asymptotic program (B.2). Convergence of ||B — B2 and Bo
then follows from similar arguments to those presented in Proposition B.5 where we show a
convergence result for ||7||2. Since the details of this proof closely mirror our other arguments,
they are omitted. O]

We now turn to the proof of Theorem 5.1. Our first result considers the case M, = 0.

Proposition B.4. Suppose the conditions of Theorem 5.1 hold. Let (M}, 55) be defined as
in Theorem B.1 and suppose that M} = 0. Let p :=P(e; — 35 < 0). Then, for all £ > 0, with
probability tending to one, all dual solutions 1 to B.1 satisfy

Zﬂ{m —(1-7)}—p|, Zﬂ{m—f} Zﬂ{m —(1-7),7)} <&

In particular, the result of Theorem 5.1 goes through for Py, = pé_i_r) + (1 — p)é;.

Proof. We will focus on the bound on = 3> 1{#; € (—(1 —7),7)}. The bounds on the other
two terms are similar. By the first-order conditions of the optimization in r, we have that for
any joint primal-dual solution (5, 3, 1),

{7}, Yi> b+ X6, ({7}, & > o+ X (5~ D),
f]ze [(1_7_)77_]7 Y;:60+X1Tﬁ7 = _[Tal_T]a 50+XT(6 ﬁN))
{_<1_7—)}7 Y; <60+Xi—rﬂ7 {_(1_7_)}a € <6O+X1T(6 6)

Now, by standard results (e.g. Theorem 3.1 of Yin et al. (1988)) we have that oyax(X)/y/n is

converging in probability to a constant ¢ > 0. In particular, this implies that with probability
converging to one, || X (5 —5)|1 < /1| X (56— 5)]l2 < n2¢||f — Bll2. So, for any p > 0 we have

gzﬂ{% —(1—-7), }grlLZILkZ 0+XT(B 5)|<P}

i=1

<33 tle— Al <20} 41 3 100+ X (5= Bl > 1)
=1

<3l - 50!<20}+7;\|30+X1T(B—B)Hl

1 & " 2¢ A~ -

< =S 1{le = B3l <30} + 118 — ol > p} + :Hﬂ — Bllz-
=1

So,

sup Zﬂ{m —(L=7),7 }<Sﬁug Zﬂ{lez 551 < 3p} + 1{|55 — bol > p}
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2 A~
+ =18 = Bllz,
p

where the suprema are over all dual solutions for 1 and all primal solutions for (8, 3),
respectively. Applying the law of large numbers and the results of Lemma B.3 we find that

1S .
sup > 1 € (=(1=7),7)} < P(ler = F5] < 3p) + 0p(1).
U
Since €; has a continuous distribution, the desired result follows by sending p — 0. O]

We now turn to the main proof of Theorem 5.1, which focuses on the more difficult case in
which M > 0. To begin, we first show that ||7jz]|2 converges.

Proposition B.5. Assume the conditions of Theorem 5.1 hold. Let C,,, Cgs,, Cy, c;, C1,Cy be
constants satisfying Lemmas B.2, B.3, B.4, and B.5 as well as the conditions of Lemma B.10.
Let M} denote the unique solutions for M, (B.2) defined in Lemma B.9 and assume that
My > 0. Let My denote the unique solutions M, in the asymptotic program (B.2) defined in
Lemma B.10. Then, for all § > 0,

P (For all dual solutions of (B.1), |[|f)||2 — v/nM;| < 5) — 1.

Proof. Let V denote the value of the asymptotic optimization program (B.2). By Propositions
B.2 and B.3, it is sufficient to show that there exists & > 0 such that with probability converging
to one,

o({n : Vney < |lijlla < VnCy, [[1ill2 = VM| > 6}) <V =€
For ease of notation, let Sy s = {M € [¢,,C,] : M > M+ 6 or M < M — 6}. By a direct
calculation following the arguments of Section B.2, we have that
o({n : Vney < il < VnCy, [[lilll2 — vrMy| > 6})
P

max min A(By, My, p1, M, p2).
(Mn€Snm,5,0<p2<C2) (|B0|<Cp,,0<Mu<Cu,0<p1<Ch) (Bo, Ma, 1, mP )

By Lemma B.10, the right hand side is strictly less than V', as desired.

We now prove Theorem 5.1.

Proof of Theorem 5.1. Let C.,, Cg,, Cy, ¢y, C1, Ca be constants satisfying Lemmas B.2, B.3,
B.4, B.5 as well as the conditions of Lemmas B.9 and B.11. Let (M3, 55, M;,p’{) denote the
unique solutions to the associated asymptotic program (B.2) defined in Lemmas B.9 and
B.10. If M = 0, the result follows from Proposition B.4. So, suppose M, > 0. Recall that
by Lemma B.9 we must have that pj > 0 and let P, denote the distribution of

My (M g1 + €1 — 5 — prox, (M g1 + €1 — B5; p1 /M)
P

. (B.7)
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Fix any bounded L-lipschitz function ¢). Let V' denote the value of the asymptotic optimization
program (B.2) and fix any x > 0 small. Let S, 5 denote the set
> 5} |

By Propositions B.2, B.3, and B.5 it is sufficient to show that there exists £ > 0 such that
with probability converging to one,

{77 vnmax{c,, My — r} < [[ill2 < Vnmin{C,, M + &}, izl/)(m) —Ezep,[V(Z)]

¢(S,€,5) <V - f

First, note since ¢ is Lipschitz we may assume that x is sufficiently small so that S, 5 C So5/2.

So,
?(Sks) < (S0,5/2)

1 1 1
= min max (M w A= nll2h + =s
(Irle<cn f|50|<0ﬂ0 0<My<Cu) (|[sll2<Csv/n,n€Sy 5/2) \ T n n 2
1 o 1.1 -
- = 1, —— (1) + — — —R;
+-n'e Bon o' Z: ) VY d(8)>
: 1 * T * 1 * 1 1 T
<  min max —M;n g— M, —Mnh + —s|| +—n'¢€
(Irll2<Crv/n (Isll2<Csv/nn€Sp,5/2) \ T nilz2 n
1 0T 1 1 5 1 -
- = 1, —— Co(r; - —R;
LT T LS ) s i)
1 - 1
= min max |—n (M g+e— 051, —1r)+—> L (r; B.8
(Irl2<Crv/m) (nE€S0,5/2) (nn (Mg b ) n; ( )> (B2
+ v | 2+ Logo Lges)
max — — —s s' f——=Rj5(s).
lslo<Covm — “lln""" " n vn N

Arguing as in Section B.2 (and in particular applying Lemmas B.5 and B.6 along with the
law of large numbers), the second term converges as

1 1 1

max —M; (|-M h+ — —s' 3 - —R
||S||2§Cs\/ﬁ n n TZ \/— ﬁ \/— d( ) (B 9)
5 max —M+7E lel,< 1 4y )] _ Tuf2
0<p2<Co 2 2

It remains to consider the first term. Let 7* € R™ be the vector given by r; = prox, (M;g; +
€ — B35 pi/My). By the law of large numbers, we have

iw <M:;(M§9i +€—
i=1 P1

53 _T:()> E)EZNPW[Z],

20



and that o, 5 ”
WGt e — 05—l B,
g _>p17
N4

where we recall that by Lemma B.11, p} = /Ez.p,[Z?]. Since v is Lipschitz, this implies
that

o 1 My (Mg + e — B85 —17)
liminf min —|n—
n—=00 nESH,5/2 \/ﬁ oui 9
n My(Mygi + e — 85 — 1) 1 P g
> liminf min — ) -= D > —.
R Z¢( o w2 V) 2 op

For ease of notation, let Z* = Mg+ € — 31, — r*. Applying these calculations, we find that
the optimization appearing on line (B.8) can be bounded as,

1 1 &
min max : (nT(M{fg +e— Bl —7)+ — E :57(7’1‘)>
n n

([Irll2<Crv/n) (n€Sp,5/2 =

1 12
< - Tz* - 67 *
< max <n77 + - ; (TZ)>

(n€So,5/2)
1 UTZ* M*HZ*H +E|¢ M*ar + g n (1>
= max —_— T ToX u € ; o
(n€So,5/2) TZM*HZ*H n 2 P Lr 9 1— Fo * P
= max z My Z* |2
o, (13| 1 ), v

+ ]E [ET (proxﬁ,,_ <M:gl + €1 — 50) *>>‘| + OIP’(]-)

) Vi 2
< 1_7* M:pi+E |£; Prox,_ M:g1 + e — 50» * + op(1)
( 8L2(Mn>2 n

_ Mypp . 62
9 +E[€e (Mu91+61 Bo; *ﬂ—WﬂLOP(l)’

where the last line applies the formula for pj given in Lemma B.11 alongside the definition of
the Moreau envelope. Combining this with (B.9) we conclude that

52
(ﬁ(Sﬁ,g) S V — W -+ 01@(1).

As discussed above, this proves the desired result.

B.5 Corollaries of Theorem 5.1

We now prove Corollaries 5.1 and 5.2.
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Proof of 5.1. Let C,,Cg,,Cy, c,, C1, Cy be constants satisfying Lemmas B.2, B.3, B.4, B.5 as
well as the conditions of Lemmas B.9 and B.11 and B.11. Let (M, 35, M}, p7) denote the

unique solutions to the associated asymptotic program (B.2) defined in Lemmas B.9 and
B.10.

To begin, we will first show that the unregularized quantile regression program must have
M} > 0. Let (B, 8,7,7) denote any primal-dual solutions to the quantile regression (B.1).
Recall that the first-order conditions of this optimization in r imply that

T, Y > B+ X3
ﬁi € [_<1 _T)7T]7 }/:L :BO+X1T67
_<1_T)7 }/’L<BO+X1TB

By Proposition B.4, if M = 0 we must have that with probability converging to one,

1 n
= i e(-(1—r7),7)} <d
"=

We will show that this is not possible.

Introduce the notation X4 to denote the submatrix of X consisting of the rows in A C
{1,...,n} and X4 p to denote the submatrix with rows in A C {1,...,n} and columns
in B C{l,...,d}. Let 14 denote the subvector of 7 with entries in A. Let Siyer. = {i €
{1,...,n} : —=(1 = 7) < #); < 7} denote the set of entries of 7§ which lie in the interior. By the
first-order conditions of (B.2) in 3, we have that

MX =0 e Xs

inter. inter. = ﬁ;nter.XSinteT< ' (Blo)
On the other hand, for any fixed set S C {1,...,n} with |[S| < d — 1 and vector v €
{—(1 —7),7}" 1% we have that with probability one v” Xg. is in the kernel of the row space

of Xg. This follows immediately from the fact that for any u € RIS,
T T T T —1 T
u Xg=v Xgo = v ch,{1,.“,|§|}(XS,{1,..‘,\§|}) XS,{|§|+1,...,d} =v X§¢,{|§\+1,..A,d}7

which occurs with probability zero since v'X e {|8|+1,...ay 1S @ continuous random vector
independent of UTXga{l,_._"gl}(XgT{l s Xs g8, S0, by (B.10) we must have that
with probability one, |Siyer.| > d — 1. As discussed above, this implies that M} > 0, as
claimed.

With the above claim in hand we are now ready to prove the main result of Corollary (5.1).
Fix any 6 > 0. Let ¢* denote the 7 quantile of the asymptotic distribution P, defined in
(B.7). We will show that with probability converging to one the empirical quantile of 7 lies
below ¢* + 26. Proof of a matching lower bound is identical. If ¢* = 7 then the result is
immediate. So, suppose that ¢* < 7. Let 15 be the step function

0, x > q* + 20,
vs(a) = ¢ TR ¢ 45 <a<q 420
1, v <q" +9.
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Fix a small value ¢ > 0 to be specified shortly. By Theorem 5.1, we have that with probability
converging to one all dual solutions satisfy

n

1
gzﬂ{nﬂq +20} > — Z% ) > Ezop,[s(Z)] — &
> IP’ZNP,,(Z <q)+Pzop (" <Z<q +6)—¢&

Since M > 0 we must have that pj > 0 and thus that P, has point masses at —(1 — 7) and
7 and a continuous distribution with positive density on (—(1 — 7),7). In particular, by
choosing ¢ sufficiently small we may guarantee that with probability converging to one, all
dual solutions satisfy

1 n
— > M <@ +20} >Pp(Z<q")+Pp (¢ <Z<q" +06)—E>,

i=1
and thus that

251> < q" + 26,

1
n =1

Quantile (

as claimed. n

The proof of Corollary 5.2 will rely on the following lemma which establishes uniqueness of
the dual solution.

Lemma B.12. Suppose the assumptions of Theorem 5.1 hold and that in addition the
reqularization is of the form Rg(w) = Z?:l )\?w? for some Me,...,\4 > 0. Then, with
probability one the dual solution 7} to (B.1) is unique.

Proof. Let Y € R™ denote the vector with entries Y7, ...,Y, and X € R™*? denote the matrix
with rows X1, ..., X, Let Jy = {j : A] > 0} and A, = diag(A{, ..., \]) denote the diagonal
matrix with diagonal entries A\¢,..., A4, Fix any primal-dual solution pair (@,7,7). Let

Line () = {i: —(1 —7) < #; < 7}. By repeating the arguments given in the proof of Theorem
4.1 under Assumption 1 one can show that

A T B T
wys Xlim,(n),Ji O\Jil,\Jil X Ting. ()¢ ,Jgrnlmc.(n)c

where the matrix inverse above is guaranteed to exist. Now, following the calculations of (?7)
in the main text, the dual optimization program can be written as

1
maximize 'Y — 17] X[n] J+AJ+X[n TN

nel—r,1—7I"

subject to nTX[n]JJcr =0.

23

. 1 -1 N
|:'7hnt.(ﬁ)‘| _ [;XIint.(ﬁ)7J+AJ+Xllnt (,,7) ijt(ﬁ)’t]_c’_‘| [Eint.( ) XImt (”7 J+A Iing. ( )C7J+77]int-(ﬁ)c
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For any set Iy, € [n] and vector n;,, € {—(1 —7),7)}" define the matrix

LX g AIXT X -
. 2 Iint.,JJr J+ Iintm]+ Iintm]c
A(Iint.) - T *

)

X[ e 015,175
Imtw']_;,_ ‘ +|7‘ +| |IintA|7‘Iint.|+‘Ji|

and vector b(Lin.,nr,, ) = %thtJhA}jXﬁt’J+77[icm‘. For any sets 1,1’ C [n] let C(I,I') =
X1, +A}j Xy g, . Using our expression for 7, (s we find that the value of the dual optimization
program must be equal to

. . 1, . A
nznh(ﬁ)y}int(ﬁ) + TIITm(ﬁ)cnim.(ﬁ)c - anmm)C(Lm.(n)a Imt.(n))mim‘(ﬁ)
1.+ 1

- §7lnnh(ﬁ)c(fint.(ﬁ)7 it (1)) () — Zﬁffnt(mc0<1‘inn(ﬁ)c, it (D)) N i () -

Now, we know that

)) }/Iint.(ﬁ) - b<[1nt(ﬁ)7 ﬁIint.(ﬁ)C>

fr. n=A Iin ] )
nLnn(Vl) ( t(n _X;—mb(ﬁ)57‘]inlint4(ﬁ)c

Substituting this into the previous expression we find that the dual program is a quadratic
polynomial in Y with coefficients that depend on the covariates X, the set of interior points
Lt (7), and the vector Ay, (e € {—(1 — ), 7 Hme. (D,

Suppose the dual program is non-unique and let /(1) and 7(2) denote two dual solutions.
Since the distribution of Y | X is continuous we have that with probability one 7(1) and 7(2)
yield the same objective value if and only if they yield same quadratic polynomial in Y. Now,
by the continuity of the distribution of X, we have that with probability one the matrices
C(Ling.(7(1)), Line. (7(1))) and C(Line.(7(2), Iint. (7(2))) have all non-zero entries. In particular,
this implies that the only way for the two polynomials to have the same second order terms
is if

[]

Proof of Corollary 5.2. By Lemma B.13 below we have that with probability one all dual
solutions satisfy {i € {1,...,n} : §; = 0} = (0. By Proposition 4.1 and Lemma A.1 this
implies that all dual solutions and all leave-one-out primal solutions satisfy

1 & N 1 & A—i A—i
=S 1{n <0} ==Y Y < B+ X/ 37}
ni3 ni4

Notably, this means that the values of =37, 1{; < 0} and + > 1{Y; < Byt + X, 51}
are unique and, in particular, do not depend on the specific primal and dual solutions.
Moreover, by applying Theorem 5.1 and the continuity of the distribution of P, at zero it is
straightforward to show that

1 n o o 1 n )
Y LY < B+ XA = 3L <0} 5 Prep, (2 <0).
=1

=1
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Since all these random variables above are bounded, we then also have that
P(Y: < Byt + X[ 87 ZHY < By + X[ BT} = Pyep,(Z <0),

or equivalently that P(V, 1 < By + XnTHB) — Pzop,(Z <0), as desired.

Lemma B.13. Under the conditions of Corollary (5.2),
P (For all dual solutions 1) to (B.2), {i € {1,...,n} : 7, =0} =0) =

Proof. The proof of this lemma is essentially identical to the proof of Theorem 4.1 under
Assumption 1. We will give a short calculation here emphasizing only the aspects of the
argument that are new and leaving many details to the proof of Theorem 4.1.

Fix any dual solution 7) and primal solution (fy, 3). For ease of notation let X = [X | 1,]
denote the matrix obtained by adding a column of ones to X. For any sets A C {1,...,n}
and B C {1,...,d+ 1} let X, p denote the sub-matrix of X given by the rows with indices
in A and columns with indices in B. Let 74 be the subvector of 7} given by the entries with
indices in A. Let i (7) = {t € {1,...,n} : —=(1 — 7) < 7 < 7} be the set of indices of 7
which lie in the interior. Let Agy; = 0 and A = diag()\y,..., A\s1) be the diagonal matrix
with diagonal entries A, ..., \gr1. Assume that I () # 00 (otherwise there is nothing to
prove). Let J. = {j: \; > 0}. Following the calculations of Theorem 4.1, there exist sets
L (1)) C i (7)) and Jsub( ) € {j : A\; =0} such that

oy = |2 KB @05 A Xffm(ﬁ),h] (stub( P~ 3K L 0.7+ Jj‘AX;rim(ﬁ)C,JJrﬁlim.(ﬁ)C) |
| X ()T () X e (1) T, () i )¢
Now, if d + 1 ¢ Jaup. (1)), then the proof of Theorem 4.1 immediately tell us that w.p.1 7y, ()

has no non-zero entries. So, suppose that d + 1 € Jow. (7). Let Jow. (1) = Joun.(7) \ {d + 1}
and rewrite the above as

~ 1o —1 N
%Xlsub.’(‘/ﬁ_)l_uJ+AJ+X}irnt4(’f]),J+ }/]sub ( %X}}sub (77 J+AJ+XLnt ( )C,J+77[inh('f])c
nIinL (ﬁ) = XIintT(ﬁ) 7jsub, (ﬁ) XIint. (n)cﬂjsubAA(U) nImL ( )
l‘lint(ﬁ)‘ 1|Iint.(ﬁ)c|n1int-(ﬁ)c

Note that by construction, we may assume without loss of generality that | Iy, (7)|4| Jsub. (7)| #
0 (otherwise one may simply make different choices for these sets). Now, take any fixed sets
Lw. C© Tie. € {1,..., 0}, and Jow, € {1,....d} with Ly # 0 and |[Lu.| + |Jou | # 0. Fix
any vector nye € {—(1 — 7), 7}l and consider the behaviour of the random variable

-1

1y “1vT
§XIsub.LJ_-FAJ+ XIint4,J+ YISU XI_Fb ’J+AJ+X mt v nllcnt
_ XT
Xlinthsub. Iicnt'vjsub nlicnt (Bll)
].T ].Tc n]c
|]lnt~‘ ‘I | int.

int.
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The first |Iiy.| — 1 entries of the vector above are continuously distributed. Write the matrix
inverse above in block form as

-1

1 _
QXI ub. :J+AJ+XImt Ji T S -1
let o - |J'|§ t.]—1 1‘|
]‘uint.| ’
By the continuity of the distribution of X, the first |[i,;.| — 1 columns of the matrix inverse

above are equal to

(T 51, )" 1
1|1 o= (T — S]'|Imt| 1)_1

Notably, every row of this matrix must have at least one non-zero entry. Since T and S are
independent of the vector appearing in (B.11) we conclude that with probability one none of
the entries of (B.11) are zero. Taking a union bound over the choices of Iy, lint., J;ub., and
nre, gives the desired result.

]

C Additional technical lemmas

In this section, we state a prove a number of additional results that are useful in the main
proofs.

Lemma C.1. Let {X;}7, "%" N(0,1,). Then, as d/n — ~ € [0, 00)

lim inf inf Z |.X; Tu+ Bol > \/> V-

dn—00 (|lull2<L,|Bo|<1,max{[[ull2,|Bol}=1) T¥

Proof. Let X € R™9 denote the matrix with rows X1, ..., X,,. Write

n

1
*Z’X;U‘i‘ﬁo‘

inf
(lull2<1,|80|<1maxc{]lull2,| Bo}=1) 7

1
= inf max —v' Xu+ ﬁov 1,.
 (lull2<1.]Bol<1.max{]lull2.|Bol}=1) (vE{£1}") N

By the convex Gaussian min-max theorem (Proposition B.2 above), we have that for any
c> 0,

1
inf max —UTXu+ 501) 1, <c (C.1)
(lull2<1,|Bol<Tmax{[[ull2,|B0[}=1) (ve{+1}") N

< 2P inf —||v uTh—l—fuv + v'l, <c
= ((u2s1,|ﬁo|s1,max{u||2,|50|}:1><ve{il}" Il ullzv”g BO

o6



where h ~ N (0, ;) and g ~ N (0, I,) are independent. Now,

inf —v uTh—l—fuv + ’U].
(lulla<L, ol <Limax{[[ullz,| o }=1) (ve (L1} 7 vl lullv”g ﬁo

1
(lull2 <1 |80l <Liax{ - ol}=1) N/ Z llull2gi + Bol
i . I

- f . Cu3G;

(0<cu<1,ﬂo<11nmax{cu730} 7 Z |cugi + Bol — \/ﬁ
IP .

f _
(0<eu <1, o< 1max{ca,fo}=1) Ellcugr + Bol] — cun/7,

where the limit follows standard uniform concentration arguments (e.g. Lemma 7.75 of
Miescke & Liese (2008) applied to the set {(cy, 5o) : 0 < ¢, < 1,|Bo] < 1}).

Finally, note that for any c,, So — E[|c,g1 + Bol] is a convex, even function and thus obtains
its minimum at 0. So,

(cu=1,B0|<1)

. 2
inf _ Ellcugr + ol] — cu/y = E[|gl] — v7 = \/; -7
On the other hand, by Jensen’s inequality,

H Cug1 +ﬁ0|] - CU\/_ = 0<i£lf<1) |Cu]E[gl] + 1” - Cuﬁ =1- \/’7

(0<cu<1 |ﬁ0| 1)

Combining the above, we conclude that

5
inf —|[vllou"h 4 =|ullv"g + v, 52— ,
(<1180 <Limasc{ 2 Bol}=1) (ve {1} >n|| I H 2" 60 7z V7

and applying (C.1) gives the desired result. ]
Our next lemma gives sufficient conditions under which partial optimization preserves strict
convexity.

Lemma C.2. [Lemma 19 of Thrampoulidis et al. (2018)] Let A and B be convex sets and
U Ax B — R be strictly conver in its first argument. Assume that V(a,-) obtains its
mazximum for all a € A. Then, a — maxpep V(a,b) is strictly conver.

Our next result computes the value of the Moreau envelope of the pinball loss.
Lemma C.3. For any x € R and p > 0 the Moreau envelope of the pinball loss is given by
o S+ T(x — pr), x—pr >0,

e, (25 p) = ;L, x € [—p(l —7),p7],
%—(1—7)(“,)(1—7)), 4 p(1—7) <0,
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Proof. The case p = 0 is given by Lemma C.6. Now, consider the case p > 0. We begin
1

by computing the proximal function. Let f(v) = %(v — x)% + £, (v) denote the objective
appearing in the definition of the Moreau envelope and the proximal function. We have that
{=f+7}h v>0,
Of(v) =1 [=5—(1—7),%% 7], v=0,

{=F-(1-7)}, v<o.
Setting this to zero we find that

x — p1, x — pT > 0,
pros, (z:p) € {0, x € [~p(1 - 1), 7],
r+p(l—7), x4+ p(l—71)<0.

Plugging this into the definition of the Moreau envelope gives the result. O

The next three lemmas state a number facts from convex analysis that are useful in the
proofs above.

Lemma C.4 (Proposition 13.13 in Bauschke & Combettes (2017)). Let f : R — RU {+o0}.
Then f* is lower semicontinuous.

Lemma C.5 (Part i of Theorem 14.3 in Bauschke & Combettes (2017)). Let f : R —
R U {+o0} be a proper, lower semicontinuous convez function. Then, for any x € R and

p > 0 we have the identity
2

er(w;p) +ep(2/p;1/p) = ;Cp-

Lemma C.6 (Theorem 1.25 in Rockafellar & Wets (1997)). Let f : R — R be convex, lower
semicontinuous, and proz-bounded. Then for all x € R,

lim s (w3 p) = f(0).
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